Subgroup having a left transversal that is also a right transversal
From Groupprops
BEWARE! This term is nonstandard and is being used locally within the wiki. [SHOW MORE]
This article defines a subgroup property: a property that can be evaluated to true/false given a group and a subgroup thereof, invariant under subgroup equivalence. View a complete list of subgroup properties[SHOW MORE]
Statement
Suppose is a subgroup of a group
. We say that
is a subgroup having a left transversal that is also a right transversal if there exists a subset
of
such that
is a left transversal of
and is also a right transversal of
.
Examples
Non-examples
See subgroup need not have a left transversal that is also a right transversal for an example of a subgroup that does not satisfy this property. In the example, the whole group is isomorphic to free group:F2 and the subgroup is free on a countable generating set.
Relation with other properties
Stronger properties
Metaproperties
Trimness
This subgroup property is trim -- it is both trivially true (true for the trivial subgroup) and identity-true (true for a group as a subgroup of itself).
View other trim subgroup properties | View other trivially true subgroup properties | View other identity-true subgroup properties
Intermediate subgroup condition
YES: This subgroup property satisfies the intermediate subgroup condition: if a subgroup has the property in the whole group, it has the property in every intermediate subgroup.
ABOUT THIS PROPERTY: View variations of this property satisfying intermediate subgroup condition | View variations of this property not satisfying intermediate subgroup condition
ABOUT INTERMEDIATE SUBROUP CONDITION:View all properties satisfying intermediate subgroup condition | View facts about intermediate subgroup condition