List of groups of small order

From Groupprops

The following is a list of the finite groups of smallest order.

Group Order GAP ID (second part) Abelian?
Trivial group 1 1 Yes
Cyclic group:Z2 2 1 Yes
Cyclic group:Z3 3 1 Yes
Cyclic group:Z4 4 1 Yes
Klein four-group 4 2 Yes
Cyclic group:Z5 5 1 Yes
Symmetric group:S3 6 2 No
Cyclic group:Z6 6 2 Yes
Cyclic group:Z7 7 1 Yes
Cyclic group:Z8 8 1 Yes
Direct product of Z4 and Z2 8 2 Yes
Dihedral group:D8 8 3 No
Quaternion group 8 4 No
Elementary abelian group:E8 8 5 Yes
Cyclic group:Z9 9 1 Yes
Elementary abelian group:E9 9 2 Yes
Dihedral group:D10 10 1 No
Cyclic group:Z10 10 2 Yes
Cyclic group:Z11 11 1 Yes
Dicyclic group:Dic12 12 1 No
Cyclic group:Z12 12 2 Yes
Alternating group:A4 12 3 No
Dihedral group:D12 12 4 No
Direct product of Z6 and Z2 12 5 Yes
Cyclic group:Z13 13 1 Yes
Dihedral group:D14 14 1 No
Cyclic group:Z14 14 2 Yes
Cyclic group:Z15 15 1 Yes
cyclic group:Z16 16 1 Yes
direct product of Z4 and Z4 16 2 Yes
SmallGroup(16,3) 16 3 No
nontrivial semidirect product of Z4 and Z4 16 4 No
direct product of Z8 and Z2 16 5 Yes
modular maximal-cyclic group:M16 16 6 No
dihedral group:D16 16 7 No
semidihedral group:SD16 16 8 No
generalized quaternion group:Q16 16 9 No
direct product of Z4 and V4 16 10 Yes
direct product of D8 and Z2 16 11 No
direct product of Q8 and Z2 16 12 No
central product of D8 and Z4 16 13 No
elementary abelian group:E16 16 14 Yes
Cyclic group:Z17 17 1 Yes
dihedral group:D18 18 1 No
cyclic group:Z18 18 2 Yes
direct product of S3 and Z3 18 3 No
generalized dihedral group for E9 18 4 No
direct product of Z6 and Z3 18 5 Yes
Cyclic group:Z19 19 1 Yes
dicyclic group:Dic20 20 1 No
cyclic group:Z20 20 2 Yes
general affine group:GA(1,5) 20 3 No
dihedral group:D20 20 4 No
direct product of Z10 and Z2 20 5 Yes
General semilinear group:GammaL(1,8) 21 1 No
cyclic group:Z21 21 2 Yes
dihedral group:D22 22 1 No
cyclic group:Z22 22 2 Yes
Cyclic group:Z23 23 1 Yes
nontrivial semidirect product of Z3 and Z8 24 1 No
Cyclic group:Z24 24 2 Yes
special linear group:SL(2,3) 24 3 No
dicyclic group:Dic24 24 4 No
direct product of S3 and Z4 24 5 No
dihedral group:D24 24 6 No
direct product of Dic12 and Z2 24 7 No
SmallGroup(24,8) 24 8 No
direct product of Z6 and Z4 24 9 Yes
direct product of D8 and Z3 24 10 No
direct product of Q8 and Z3 24 11 No
symmetric group:S4 24 12 No
direct product of A4 and Z2 24 13 No
direct product of D12 and Z2 24 14 No
direct product of E8 and Z3 24 15 Yes
Cyclic group:Z25 25 1 Yes
Elementary abelian group:E25 25 2 Yes
dihedral group:D26 26 1 No
cyclic group:Z26 26 2 Yes
cyclic group:Z27 27 1 Yes
direct product of Z9 and Z3 27 2 Yes
prime-cube order group:U(3,3) 27 3 No
M27 (semidirect product of Z9 and Z3) 27 4 No
elementary abelian group:E27 27 5 Yes
Dicyclic group:Dic28 28 1 No
cyclic group:Z28 28 2 Yes
dihedral group:D28 28 3 No
direct product of Z2 and Z14 28 4 Yes
Cyclic group:Z29 29 1 Yes
Direct product of Z5 and S3 30 1 No
Direct product of Z3 and D10 30 2 No
dihedral group:D30 30 3 No
cyclic group:Z30 30 4 Yes
Cyclic group:Z31 31 1 Yes
Cyclic group:Z32 32 1 Yes
SmallGroup(32,2) 32 2 No
Direct product of Z8 and Z4 32 3 Yes
Semidirect product of Z8 and Z4 of M-type 32 4 No
SmallGroup(32,5) 32 5 No
Faithful semidirect product of E8 and Z4 32 6 No
SmallGroup(32,7) 32 7 No
SmallGroup(32,8) 32 8 No
SmallGroup(32,9) 32 9 No
SmallGroup(32,10) 32 10 No
Wreath product of Z4 and Z2 32 11 No
SmallGroup(32,12) 32 12 No
Semidirect product of Z8 and Z4 of semidihedral type 32 13 No
Semidirect product of Z8 and Z4 of dihedral type 32 14 No
SmallGroup(32,15) 32 15 No
Direct product of Z16 and Z2 32 16 Yes
M32 32 17 No
Dihedral group:D32 32 18 No
Semidihedral group:SD32 32 19 No
Generalized quaternion group:Q32 32 20 No
Direct product of Z4 and Z4 and Z2 32 21 Yes
Direct product of SmallGroup(16,3) and Z2 32 22 No
Direct product of SmallGroup(16,4) and Z2 32 23 No
SmallGroup(32,24) 32 24 No
Direct product of D8 and Z4 32 25 No
Direct product of Q8 and Z4 32 26 No
SmallGroup(32,27) 32 27 No
SmallGroup(32,28) 32 28 No
SmallGroup(32,29) 32 29 No
SmallGroup(32,30) 32 30 No
SmallGroup(32,31) 32 31 No
SmallGroup(32,32) 32 32 No
SmallGroup(32,33) 32 33 No
Generalized dihedral group for direct product of Z4 and Z4 32 34 No
SmallGroup(32,35) 32 35 No
Direct product of Z8 and V4 32 36 Yes
Direct product of M16 and Z2 32 37 No
Central product of D8 and Z8 32 38 No
Direct product of D16 and Z2 32 39 No
Direct product of SD16 and Z2 32 40 No
Direct product of Q16 and Z2 32 41 No
Central product of D16 and Z4 32 42 No
Holomorph of Z8 32 43 No
SmallGroup(32,44) 32 44 No
Direct product of E8 and Z4 32 45 Yes
Direct product of D8 and V4 32 46 No
Direct product of Q8 and V4 32 47 No
Direct product of SmallGroup(16,13) and Z2 32 48 No
Inner holomorph of D8 32 49 No
Central product of D8 and Q8 32 50 No
Elementary abelian group:E32 32 51 Yes
Cyclic group:Z33 33 1 Yes
dihedral group:D34 34 1 No
cyclic group:Z34 34 2 Yes
Cyclic group:Z35 35 1 Yes
Dicyclic group:Dic36 36 1 No
Cyclic group:Z36 36 2 Yes
SmallGroup(36,3) 36 3 No
Dihedral group:D36 36 4 No
Direct product of E4 and Z9 36 5 Yes
SmallGroup(36,6) 36 6 No
SmallGroup(36,7) 36 7 No
Direct product of E9 and Z4 36 8 Yes
SmallGroup(36,9) 36 9 No
Direct product of S3 and S3 36 10 No
Direct product of A4 and Z3 36 11 No
Direct product of D12 and Z3 36 12 No
SmallGroup(36,13) 36 13 No
Direct product of E4 and E9 36 14 Yes
Cyclic group:Z37 37 1 Yes
dihedral group:D38 38 1 No
cyclic group:Z38 38 2 Yes
Semidirect product of Z13 with Z3 39 1 No
cyclic group:Z39 39 2 Yes
semidirect product of Z5 and Z8 via inverse map 40 1 No
cyclic group:Z40 40 2 Yes
semidirect product of Z5 and Z8 via square map 40 3 No
nontrivial semidirect product of Z5 and Q8 40 4 No
direct product of D10 and Z4 40 5 No
dihedral group:D40 40 6 No
SmallGroup(40,7) 40 7 No
SmallGroup(40,8) 40 8 No
direct product of Z20 and Z2 (also direct product of Z10 and Z4) 40 9 Yes
direct product of D8 and Z5 40 10 No
direct product of Q8 and Z5 40 11 No
direct product of GA(1,5) and Z2 40 12 No
direct product of D10 and V4 40 13 No
direct product of E8 and Z5 40 14 Yes
Cyclic group:Z41 41 1 Yes
General affine group:GA(1,7), also known as F7 42 1 No
direct product of Z2 and the semidirect product of Z7 and Z3 42 2 No
direct product of S3 and Z7 42 3 No
direct product of D14 and Z3 42 4 No
dihedral group:D42 42 5 No
cyclic group:Z42 42 6 Yes
Cyclic group:Z43 43 1 Yes
Dicyclic group:Dic44 44 1 No
cyclic group:Z44 44 2 Yes
dihedral group:D44 44 3 No
direct product of Z2 and Z22 44 4 Yes
cyclic group:Z45 45 1 Yes
direct product of Z15 and Z3 45 2 Yes
dihedral group:D46 46 1 No
cyclic group:Z46 46 2 Yes
Cyclic group:Z47 47 1 Yes
SmallGroup(48,1) 48 1 No
Cyclic group:Z48 48 2 Yes
SmallGroup(48,3) 48 3 No
SmallGroup(48,4) 48 4 No
SmallGroup(48,5) 48 5 No
SmallGroup(48,6) 48 6 No
Dihedral group:D48 48 7 No
SmallGroup(48,8) 48 8 No
SmallGroup(48,9) 48 9 No
SmallGroup(48,10) 48 10 No
SmallGroup(48,11) 48 11 No
SmallGroup(48,12) 48 12 No
SmallGroup(48,13) 48 13 No
SmallGroup(48,14) 48 14 No
SmallGroup(48,15) 48 15 No
SmallGroup(48,16) 48 16 No
SmallGroup(48,17) 48 17 No
SmallGroup(48,18) 48 18 No
SmallGroup(48,19) 48 19 No
SmallGroup(48,20) 48 20 Yes
Direct product of SmallGroup(16,3) and Z3 48 21 No
SmallGroup(48,22) 48 22 No
SmallGroup(48,23) 48 23 Yes
Direct product of M16 and Z3 48 24 No
Direct product of D16 and Z3 48 25 No
Direct product of SD16 and Z3 48 26 No
SmallGroup(48,27) 48 27 No
Binary octahedral group 48 28 No
General linear group:GL(2,3) 48 29 No
Special linear group:SL(2,Z4) 48 30 No
Direct product of A4 and Z4 48 31 No
Direct product of SL(2,3) and Z2 48 32 No
Central product of SL(2,3) and Z4 48 33 No
SmallGroup(48,34) 48 34 No
SmallGroup(48,35) 48 35 No
SmallGroup(48,36) 48 36 No
SmallGroup(48,37) 48 37 No
Direct product of D8 and S3 48 38 No
SmallGroup(48,39) 48 39 No
Direct product of Q8 and S3 48 40 No
SmallGroup(48,41) 48 41 No
SmallGroup(48,42) 48 42 No
SmallGroup(48,43) 48 43 No
SmallGroup(48,44) 48 44 Yes
Direct product of D8 and Z6 48 45 No
SmallGroup(48,46) 48 46 No
Central product of D8 and Z12 48 47 No
Direct product of S4 and Z2 48 48 No
Direct product of A4 and V4 48 49 No
SmallGroup(48,50) 48 50 No
SmallGroup(48,51) 48 51 No
SmallGroup(48,52) 48 52 Yes
Cyclic group:Z49 49 1 Yes
Elementary abelian group:E49 49 2 Yes
dihedral group:D50 50 1 No
cyclic group:Z50 50 2 Yes
direct product of C5 and D10 50 3 No
semidirect product of direct product of Z5 and Z5 with Z2 50 4 No
direct product of Z10 and C5 50 5 Yes