Cyclic group:Z24
From Groupprops
This article is about a particular group, i.e., a group unique upto isomorphism. View specific information (such as linear representation theory, subgroup structure) about this group
View a complete list of particular groups (this is a very huge list!)[SHOW MORE]
Contents
Definition
This group is defined in the following equivalent ways:
- It is the cyclic group of order
.
- It is the direct product of the cyclic group of order eight and the cyclic group of order three.
Arithmetic functions
Function | Value | Explanation |
---|---|---|
order | 24 | |
exponent | 24 | |
nilpotency class | 1 | |
derived length | 1 |
GAP implementation
Group ID
This finite group has order 24 and has ID 2 among the groups of order 24 in GAP's SmallGroup library. For context, there are 15 groups of order 24. It can thus be defined using GAP's SmallGroup function as:
SmallGroup(24,2)
For instance, we can use the following assignment in GAP to create the group and name it :
gap> G := SmallGroup(24,2);
Conversely, to check whether a given group is in fact the group we want, we can use GAP's IdGroup function:
IdGroup(G) = [24,2]
or just do:
IdGroup(G)
to have GAP output the group ID, that we can then compare to what we want.
Other descriptions
The group can be defined using GAP's CyclicGroup function:
CyclicGroup(24)