Conjugate-permutable implies subnormal in finite
This article gives the statement and possibly, proof, of an implication relation between two subgroup properties, when the big group is a finite group. That is, it states that in a Finite group (?), every subgroup satisfying the first subgroup property (i.e., Conjugate-permutable subgroup (?)) must also satisfy the second subgroup property (i.e., Subnormal subgroup (?)). In other words, every conjugate-permutable subgroup of finite group is a subnormal subgroup of finite group.
View all subgroup property implications in finite groups View all subgroup property non-implications in finite groups View all subgroup property implications View all subgroup property non-implications
Statement
Any conjugate-permutable subgroup of a finite group is subnormal.
Related facts
- Permutable implies subnormal in finite
- 2-subnormal implies conjugate-permutable
- Subnormal not implies conjugate-permutable
- Conjugate-permutable implies descendant in slender
Facts used
- Conjugate-permutability satisfies intermediate subgroup condition
- Maximal conjugate-permutable implies normal
Proof
Given: A finite group , a conjugate-permutable subgroup of .
To prove: is a subnormal subgroup of .
Proof:
- (Fact used: fact (1)): Define a descending chain as follows: , and if properly contains , is a maximal element among the proper conjugate-permutable subgroups of that contain .
- (Well-definedness): Note that by fact (1), is conjugate-permutable in , so the collection of proper conjugate-permutable subgroups of containing is nonempty. Since is finite, it has a maximal element.
- (Terminates at in finitely many steps): The chain is a strictly descending chain of subgroups until it reaches . Since is finite, it terminates in finitely many steps at . Thus, there exists such that .
- (Fact used: fact (2)): By definition, is a maximal conjugate-permutable subgroup of , so fact (2) tells us that is normal in .
- (Conclusion): The s thus form a subnormal series for in , making a subnormal subgroup of .