Self-normalizing subgroup
This article defines a subgroup property: a property that can be evaluated to true/false given a group and a subgroup thereof, invariant under subgroup equivalence. View a complete list of subgroup properties[SHOW MORE]
This is an opposite of normality
History
The historical roots of this term, viz how the term and the concept were developed, are missing from this article. If you have any idea or knowledge, please contribute right now by editing this section. To learn more about what goes into the History section, click here
Definition
Symbol-free definition
A subgroup of a group is termed self-normalizing if it equals its own normalizer in the whole group.
Definition with symbols
A subgroup of a group is termed self-normalizing if .
Formalisms
BEWARE! This section of the article uses terminology local to the wiki, possibly without giving a full explanation of the terminology used (though efforts have been made to clarify terminology as much as possible within the particular context)
First-order description
This subgroup property is a first-order subgroup property, viz., it has a first-order description in the theory of groups.
View a complete list of first-order subgroup properties
This is essentially because the normalizer of a subgroup has a first-order description.
Relation with other properties
Stronger properties
Weaker properties
- WC-subgroup
- Subgroup with canonical Abelianization: For full proof, refer: Self-normalizing implies canonical Abelianization
Incomparable properties
Metaproperties
Intermediate subgroup condition
YES: This subgroup property satisfies the intermediate subgroup condition: if a subgroup has the property in the whole group, it has the property in every intermediate subgroup.
ABOUT THIS PROPERTY: View variations of this property satisfying intermediate subgroup condition | View variations of this property not satisfying intermediate subgroup condition
ABOUT INTERMEDIATE SUBROUP CONDITION:View all properties satisfying intermediate subgroup condition | View facts about intermediate subgroup condition
Let be groups. Then the condition that is self-normalizing in means that which will imply that , and hence that is self-normalizing in .
Thus, any self-normalizing subgroup is also self-normalizing in every intermediate subgroup.
NCI
This subgroup property is a NCI-subgroup property, i.e., it is identity-true subgroup property and further, the only normal subgroup of a group that satisfies the property is the whole group
It is clear that a subgroup that is both normal and self-normalizing must be the whole group -- that's because its normalizer equals both itself and the whole group.
Intersection-closedness
This subgroup property is not intersection-closed, viz., it is not true that an intersection of subgroups with this property must have this property.
Read an article on methods to prove that a subgroup property is not intersection-closed
An intersection of self-normalizing subgroups need not be self-normalizing. This follows from the fact that it is a NCI-subgroup property, and hence cannot be normal core-closed.
References
- Nilpotent self-normalizing subgroups of soluble groups by Roger W. Carter, Math. Zeitschr. 75, 136-139 (1961)
- Nilpotent subgroups of finite soluble groups by John S. Rose, Math. Zeitschr. 106, 97-112 (1968)