Abelian fully invariant subgroup

From Groupprops
Revision as of 17:27, 12 August 2013 by Vipul (talk | contribs)

This article describes a property that arises as the conjunction of a subgroup property: fully invariant subgroup with a group property (itself viewed as a subgroup property): abelian group
View a complete list of such conjunctions

Definition

A subgroup of a group is termed an abelian fully invariant subgroup or fully invariant abelian subgroup if is an abelian group as a group in its own right (or equivalently, is an abelian subgroup of ) and is also a fully invariant subgroup (or fully characteristic subgroup) of .

Facts

Relation with other properties

Stronger properties

Property Meaning Proof of implication Proof of strictness (reverse implication failure) Intermediate notions
fully invariant subgroup of abelian group |FULL LIST, MORE INFO

Weaker properties

Property Meaning Proof of implication Proof of strictness (reverse implication failure) Intermediate notions
abelian characteristic subgroup abelian and a characteristic subgroup -- invariant under all automorphisms follows from fully invariant implies characteristic follows from characteristic not implies fully invariant in finite abelian group |FULL LIST, MORE INFO
abelian normal subgroup abelian and a normal subgroup -- invariant under all inner automorphisms (via abelian characteristic, follows from characteristic implies normal) follows from normal not implies characteristic in the collection of all groups satisfying a nontrivial finite direct product-closed group property |FULL LIST, MORE INFO
abelian subnormal subgroup abelian and a subnormal subgroup |FULL LIST, MORE INFO