Fully invariant direct factor
This page describes a subgroup property obtained as a conjunction (AND) of two (or more) more fundamental subgroup properties: fully invariant subgroup and direct factor
View other subgroup property conjunctions | view all subgroup properties
Definition
A subgroup of a group is termed a fully invariant direct factor if it satisfies the following equivalent conditions:
- It is both a fully invariant subgroup and a direct factor.
- It is both a homomorph-containing subgroup and a direct factor.
- It is both an isomorph-onctaining subgroup and a direct factor.
Equivalence of definitions
Further information: Equivalence of definitions of fully invariant direct factor