A4 in S4: Difference between revisions

From Groupprops
No edit summary
Line 31: Line 31:


<math>\! \{ (), (1,2) \}, \{ (), (1,3) \}, \{ (), (1,4) \}, \{ (), (2,3) \}, \{ (), (2,4) \}, \{ (), (3,4) \}</math>
<math>\! \{ (), (1,2) \}, \{ (), (1,3) \}, \{ (), (1,4) \}, \{ (), (2,3) \}, \{ (), (2,4) \}, \{ (), (3,4) \}</math>
===Properties related to complementation===
{| class="sortable" border="1"
! Property !! Meaning !! Satisfied? !! Explanation !! Comment
|-
| [[satisfies property::complemented normal subgroup]] || normal subgroup with permutable complement || Yes || ||
|-
| [[satisfies property::complemented characteristic subgroup]] || characteristic subgroup with permutable complement || Yes || ||
|-
| [[satisfies property::complemented fully invariant subgroup]] || [[fully invariant subgroup]] with permutable complement || Yes || ||
|-
| [[satisfies property::permutably complemented subgroup]] || has a permutable complement || Yes || ||
|-
| [[satisfies property::lattice-complemented subgroup]] || has a lattice complement || Yes || ||
|-
| [[dissatisfies property::retract]] || has a normal complement || No || ||
|-
| [[dissatisfies property::direct factor]] || normal subgroup with normal complement || No || ||
|}
==Subgroup-defining functions==
The subgroup is a [[characteristic subgroup]] and arises as a result of many common [[subgroup-defining function]]s on the whole group. Some of these are given below:
{| class="sortable" border="1"
! Subgroup-defining function !! Meaning in general !! Why it takes this value
|-
| [[derived subgroup]] || subgroup generated by commutators || All the even permutations are commutators. In general, the alternating group is the derived subgroup of the corresponding symmetric group.
|-
| subgroup generated by squares || subgroup generated by squares || The squares are precisely the identity element and all the 3-cycles. These together form more than half of the alternating group, and hence generate it (See [[subgroup of size more than half is whole group]]).
|-
| [[Jacobson radical]] || intersection of all [[maximal normal subgroup]]s || It is the unique maximal normal subgroup. The whole group is a [[one-headed group]] and this subgroup is the head.
|-
| 3-[[Sylow closure]] || [[normal closure]] of any 3-Sylow subgroup, or join of all the 3-Sylow subgroups || (Same reason as subgroup generated by squares)
|}
==Description in alternative interpretations of the whole group==
{| class="sortable" border="1"
! Interpretation of <math>G</math> !! Corresponding interpretation of <math>H</math>
|-
| As the symmetric group of degree four. || alternating group of degree four.
|-
| As the [[projective general linear group of degree two]] over [[field:F3]] || [[projecitve special linear group of degree two]] over [[field:F3]]
|-
| As the full tetrahedral group, i.e., the full group of symmetries of the regular tetrahedron || Orientation-preserving symmetries of the regular tetrahedron.
|-
| As the group of orientation-preserving symmetries of the cube or octahedron. || ?
|-
| The triangle group with parameters <math>(3,3,2)</math> || The corresponding von Dyck group with parameters <math>(3,3,2)</math>
|-
| The von Dyck group with parameters <math>(4,3,2)</math> || ?
|}

Revision as of 01:22, 1 December 2010

This article is about a particular subgroup in a group, up to equivalence of subgroups (i.e., an isomorphism of groups that induces the corresponding isomorphism of subgroups). The subgroup is (up to isomorphism) alternating group:A4 and the group is (up to isomorphism) symmetric group:S4 (see subgroup structure of symmetric group:S4).
The subgroup is a normal subgroup and the quotient group is isomorphic to cyclic group:Z2.
VIEW: Group-subgroup pairs with the same subgroup part | Group-subgroup pairs with the same group part| Group-subgroup pairs with the same quotient part | All pages on particular subgroups in groups

This article describes the subgroup in the group , where is the symmetric group of degree four, acting on the set (for concreteness) and is the alternating group of degree four, i.e., the subset of comprising the even permutations.

is a subgroup of index two, and its unique other coset (which is both a left coset and right coset) is the set of odd permutations.

Explicitly:

See also element structure of symmetric group:S4 (to understand more about the elements, and which of them are even and which are odd permutations) and subgroup structure of symmetric group:S4.

Cosets

is a subgroup of index two, hence a normal subgroup. It has exactly two cosets: the subgroup itself and the rest of the group. Each of these is both a left coset and a right coset. The subgroup is the set of even permutations, and the other coset is the set of odd permutations. Explicitly:

For more on the element structure and interaction with conjugacy class structure, see element structure of symmetric group:S4#Interpretation as symmetric group.

Complements

COMPLEMENTS TO NORMAL SUBGROUP: TERMS/FACTS TO CHECK AGAINST:
TERMS: permutable complements | permutably complemented subgroup | lattice-complemented subgroup | complemented normal subgroup (normal subgroup that has permutable complement, equivalently, that has lattice complement) | retract (subgroup having a normal complement)
FACTS: complement to normal subgroup is isomorphic to quotient | complements to abelian normal subgroup are automorphic | complements to normal subgroup need not be automorphic | Schur-Zassenhaus theorem (two parts: normal Hall implies permutably complemented and Hall retract implies order-conjugate)

There are six different candidates for a permutable complement to in . Since is a normal subgroup of , these are also precisely the lattice complements of in . Each of these is isomorphic to the quotient group cyclic group:Z2 and in fact, in this case, they are all conjugate subgroups in :

Properties related to complementation

Property Meaning Satisfied? Explanation Comment
complemented normal subgroup normal subgroup with permutable complement Yes
complemented characteristic subgroup characteristic subgroup with permutable complement Yes
complemented fully invariant subgroup fully invariant subgroup with permutable complement Yes
permutably complemented subgroup has a permutable complement Yes
lattice-complemented subgroup has a lattice complement Yes
retract has a normal complement No
direct factor normal subgroup with normal complement No

Subgroup-defining functions

The subgroup is a characteristic subgroup and arises as a result of many common subgroup-defining functions on the whole group. Some of these are given below:

Subgroup-defining function Meaning in general Why it takes this value
derived subgroup subgroup generated by commutators All the even permutations are commutators. In general, the alternating group is the derived subgroup of the corresponding symmetric group.
subgroup generated by squares subgroup generated by squares The squares are precisely the identity element and all the 3-cycles. These together form more than half of the alternating group, and hence generate it (See subgroup of size more than half is whole group).
Jacobson radical intersection of all maximal normal subgroups It is the unique maximal normal subgroup. The whole group is a one-headed group and this subgroup is the head.
3-Sylow closure normal closure of any 3-Sylow subgroup, or join of all the 3-Sylow subgroups (Same reason as subgroup generated by squares)

Description in alternative interpretations of the whole group

Interpretation of Corresponding interpretation of
As the symmetric group of degree four. alternating group of degree four.
As the projective general linear group of degree two over field:F3 projecitve special linear group of degree two over field:F3
As the full tetrahedral group, i.e., the full group of symmetries of the regular tetrahedron Orientation-preserving symmetries of the regular tetrahedron.
As the group of orientation-preserving symmetries of the cube or octahedron. ?
The triangle group with parameters The corresponding von Dyck group with parameters
The von Dyck group with parameters ?