Permutably complemented subgroup: Difference between revisions
| (12 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
{{semibasicdef}} | |||
{{subgroup property}} | {{subgroup property}} | ||
==Definition== | ==Definition== | ||
| Line 15: | Line 14: | ||
A subgroup <math>H</math> of a group <math>G</math> is said to be '''permutably complemented''' if there is a subgroup <math>K</math> of <math>G</math> such that <math>HK = KH = G</math> and <math>H \cap K</math> is trivial. | A subgroup <math>H</math> of a group <math>G</math> is said to be '''permutably complemented''' if there is a subgroup <math>K</math> of <math>G</math> such that <math>HK = KH = G</math> and <math>H \cap K</math> is trivial. | ||
<math>K</math> is termed a [[permutable complement]] to <math>H</math>. | <math>K</math> is termed a [[permutable complements|permutable complement]] to <math>H</math>. | ||
==Formalisms== | |||
{{wikilocal-section}} | |||
{{monadic second-order subgroup property}} | |||
==Relation with other properties== | ==Relation with other properties== | ||
| Line 21: | Line 27: | ||
===Stronger properties=== | ===Stronger properties=== | ||
* [[Retract]] | * [[Weaker than::Retract]] | ||
* [[Direct factor]] | * [[Weaker than::Direct factor]] | ||
* [[Permutably complemented normal subgroup]] | * [[Weaker than::Permutably complemented normal subgroup]] | ||
* [[Strongly permutably complemented subgroup]] | * [[Weaker than::Strongly permutably complemented subgroup]] | ||
* [[Weaker than::Conjugation-invariantly permutably complemented subgroup]] | |||
===Weaker properties=== | ===Weaker properties=== | ||
* [[Lattice-complemented subgroup]] | * [[Stronger than::Lattice-complemented subgroup]] | ||
==Metaproperties== | ==Metaproperties== | ||
| Line 36: | Line 43: | ||
The trivial subgroup and the whole group are permutable complements of each other, hence both are permutably complemented subgroups. | The trivial subgroup and the whole group are permutable complements of each other, hence both are permutably complemented subgroups. | ||
{{intsubcondn}} | |||
if <math>H</math> is a permutably complemented subgroup of <math>G</math>, then <math>H</math> is also permutably complemented in every intermediate subgroup <math>K</math> of <math>G</math>. This follows from the [[modular property of groups]]. {{further|[[Permutably complemented satisfies intermediate subgroup condition]]}} | |||
{{intransitive}} | |||
If <math>H</math> is a permutably complemented subgroup of <math>K</math> and <math>K</math> is a permutably complemented subgroup of <math>G</math>, <math>H</math> need not be permutably complemented in <math>G</math>. The reason is that the permutable complement of <math>H</math> in <math>K</math> need ''not'' permute with the permutable complement of <math>K</math> in <math>G</math>. {{proofat|[[Permutably complemented is not transitive]]}} | |||
{{not intersection-closed}} | |||
An intersection of permutably complemented subgroups need not be permutably complemented. {{proofat|[[Permutably complemented is not intersection-closed]]}} | |||
{{not transfercondn}} | |||
If <math>H</math> is a permutably complemented subgroup of <math>G</math>, and <math>K</math> is some subgroup of <math>G</math>, <math>H \cap K</math> need not be permutably complemented in <math>K</math>. {{proofat|[[Permutably complemented does not satisfy transfer condition]]}} | |||
{{quot-transitive}} | |||
Suppose <math>H \le K \le G</math> are such that <math>H</math> is a permutably complemented normal subgroup of <math>G</math> and <math>K/H</math> is a permutably complemented subgroup of <math>G/H</math>. Then, <math>K</math> is also permutably complemented in <math>G</math>. {{further|[[Permutably complemented is quotient-transitive]]}} | |||
{{imagecondn}} | |||
If <math>\varphi:G \to K</math> is a surjective homomorphism, and <math>H</math> is a permutably complemented subgroup of <math>G</math>, <math>\varphi(H)</math> is a permutably complemented subgroup of <math>K</math>. {{proofat|[[Permutably complemented satisfies image condition]]}} | |||
Latest revision as of 18:49, 20 May 2009
This article is about a standard (though not very rudimentary) definition in group theory. The article text may, however, contain more than just the basic definition
VIEW: Definitions built on this | Facts about this: (facts closely related to Permutably complemented subgroup, all facts related to Permutably complemented subgroup) |Survey articles about this | Survey articles about definitions built on this
VIEW RELATED: Analogues of this | Variations of this | Opposites of this |
View a complete list of semi-basic definitions on this wiki
This article defines a subgroup property: a property that can be evaluated to true/false given a group and a subgroup thereof, invariant under subgroup equivalence. View a complete list of subgroup properties[SHOW MORE]
Definition
Symbol-free definition
A subgroup of a group is said to be permutably complemented if there is another subgroup that intersects it trivially and such that the product group of these groups is the whole group.
This other subgroup is termed a permutable complement.
Definition with symbols
A subgroup of a group is said to be permutably complemented if there is a subgroup of such that and is trivial.
is termed a permutable complement to .
Formalisms
BEWARE! This section of the article uses terminology local to the wiki, possibly without giving a full explanation of the terminology used (though efforts have been made to clarify terminology as much as possible within the particular context)
Monadic second-order description
This subgroup property is a monadic second-order subgroup property, viz., it has a monadic second-order description in the theory of groups
View other monadic second-order subgroup properties
Relation with other properties
Stronger properties
- Retract
- Direct factor
- Permutably complemented normal subgroup
- Strongly permutably complemented subgroup
- Conjugation-invariantly permutably complemented subgroup
Weaker properties
Metaproperties
Trimness
This subgroup property is trim -- it is both trivially true (true for the trivial subgroup) and identity-true (true for a group as a subgroup of itself).
View other trim subgroup properties | View other trivially true subgroup properties | View other identity-true subgroup properties
The trivial subgroup and the whole group are permutable complements of each other, hence both are permutably complemented subgroups.
Intermediate subgroup condition
YES: This subgroup property satisfies the intermediate subgroup condition: if a subgroup has the property in the whole group, it has the property in every intermediate subgroup.
ABOUT THIS PROPERTY: View variations of this property satisfying intermediate subgroup condition | View variations of this property not satisfying intermediate subgroup condition
ABOUT INTERMEDIATE SUBROUP CONDITION:View all properties satisfying intermediate subgroup condition | View facts about intermediate subgroup condition
if is a permutably complemented subgroup of , then is also permutably complemented in every intermediate subgroup of . This follows from the modular property of groups. Further information: Permutably complemented satisfies intermediate subgroup condition
Transitivity
NO: This subgroup property is not transitive: a subgroup with this property in a subgroup with this property, need not have the property in the whole group
ABOUT THIS PROPERTY: View variations of this property that are transitive|View variations of this property that are not transitive
ABOUT TRANSITIVITY: View a complete list of subgroup properties that are not transitive|View facts related to transitivity of subgroup properties | View a survey article on disproving transitivity
If is a permutably complemented subgroup of and is a permutably complemented subgroup of , need not be permutably complemented in . The reason is that the permutable complement of in need not permute with the permutable complement of in . For full proof, refer: Permutably complemented is not transitive
Intersection-closedness
This subgroup property is not intersection-closed, viz., it is not true that an intersection of subgroups with this property must have this property.
Read an article on methods to prove that a subgroup property is not intersection-closed
An intersection of permutably complemented subgroups need not be permutably complemented. For full proof, refer: Permutably complemented is not intersection-closed
Transfer condition
This subgroup property does not satisfy the transfer condition
If is a permutably complemented subgroup of , and is some subgroup of , need not be permutably complemented in . For full proof, refer: Permutably complemented does not satisfy transfer condition
Quotient-transitivity
This subgroup property is quotient-transitive: the corresponding quotient property is transitive.
View a complete list of quotient-transitive subgroup properties
Suppose are such that is a permutably complemented normal subgroup of and is a permutably complemented subgroup of . Then, is also permutably complemented in . Further information: Permutably complemented is quotient-transitive
Image condition
YES: This subgroup property satisfies the image condition, i.e., under any surjective homomorphism, the image of a subgroup satisfying the property also satisfies the property
View other subgroup properties satisfying image condition
If is a surjective homomorphism, and is a permutably complemented subgroup of , is a permutably complemented subgroup of . For full proof, refer: Permutably complemented satisfies image condition