Universal power not implies IA

From Groupprops
Jump to: navigation, search
This article gives the statement and possibly, proof, of a non-implication relation between two automorphism properties. That is, it states that every automorphism satisfying the first automorphism property (i.e., universal power automorphism) need not satisfy the second automorphism property (i.e., IA-automorphism)
View a complete list of automorphism property non-implications | View a complete list of automorphism property implications
Get more facts about universal power automorphism|Get more facts about IA-automorphism

Statement

A universal power automorphism of a group (i.e., an automorphism obtained by taking the n^{th} power for some integer n) need not be an IA-automorphism: it need not preserve the cosets of the commutator subgroup (i.e., it need not be identity on the Abelianization).

Related facts

Corollaries

Proof

Example of an Abelian group

Consider the cyclic group of order p, where p is an odd prime. The inverse map is a universal power automorphism of this group, and is not the identity map. Since the group is Abelian, it equals its Abelianization, so we have a universal power automorphism that does not fix every element of the Abelianization.