Saturated fusion system
From Groupprops
This is a variation of group|Find other variations of group | Read a survey article on varying group
Definition
Let be a group of prime power order, say a finite -group, for a prime . A saturated fusion system on is a category on (in the sense of a category on a finite p-group) with the following properties:
Condition name | Qualitative description of condition | Condition details |
---|---|---|
contains inner fusion system | This condition makes sure that the obvious homomorphisms are included | For any subgroups , all injective homomorphisms from to that arise as restrictions of inner automorphisms of , are present in . In other words, the inner fusion system on is a subcategory of . |
Sylow axiom | This condition is a purely global condition, i.e., it gives information only about automorphisms at the global level | The inner automorphisms of form a Sylow subgroup of the group of automorphisms of in . |
Extension axiom | This condition links up the local and the global | Call a subgroup of fully normalized by if for any where is isomorphism in the category . Also define, for any morphism in : Then the statement of the extension axiom is: Every morphism such that is fully -normalized, extends to a morphism . |
Terminological note
Some people use the term fusion system for what is defined here as a saturated fusion system. Others use fusion system to mean a category on a finite p-group that contains the inner fusion system. People in both terminological camps are usually interested only in saturated fusion systems when they talk of fusion systems.
There are multiple conventions on whether the term fusion system should refer to saturated fusion system or to a weaker notion. For our purposes, we will mostly be interested in saturated fusion systems, because these mimic/generalize situations where the -group is a -Sylow subgroup of some finite group. Unless otherwise specified, we are referring to saturated fusion systems when we talk about fusion systems.
References
- Introduction to Fusion Systems by Markus Linckelmann^{Weblink}^{More info}