Linear representation theory of unitriangular matrix group:UT(3,3)

From Groupprops

This article gives specific information, namely, linear representation theory, about a particular group, namely: unitriangular matrix group:UT(3,3).
View linear representation theory of particular groups | View other specific information about unitriangular matrix group:UT(3,3)

This article describes the linear representation theory of unitriangular matrix group:UT(3,3), which is the unitriangular matrix group of degree three over field:F3. It is the unique non-abelian group of order and exponent three.

Summary

Item Value
degrees of irreducible representations over a splitting field 1,1,1,1,1,1,1,1,1,3,3 (1 occurs 9 times, 3 occurs 2 times)
maximum: 3, lcm: 3, number: 11, sum of squares: 27
Schur index values of irreducible representations 1,1,1,1,1,1,1,1,1,1,1
smallest field of realization (characteristic zero) or
condition for a field to be a splitting field characteristic not 3, contains a primitive cube root of unity, i.e., the polynomial splits.
For a finite field of size , equivalent to 3 dividing
smallest size splitting field field:F4, i.e., the field with 4 elements
orbit structure of irreducible representations under automorphism group ?

Family contexts

Family Parameter values General discussion of linear representation theory of family
unitriangular matrix group of degree three, more specifically unitriangular matrix group:UT(3,p) field:F3, i.e., specific: linear representation theory of unitriangular matrix group:UT(3,p)
more generic: linear representation theory of unitriangular matrix group of degree three over a finite field
extraspecial group extraspecial group of order of "+" type linear representation theory of extraspecial groups
Burnside group linear representation theory of Burnside groups

This page is currently under development, but you can probably get the information you're interested in from the following alternative page: linear representation theory of unitriangular matrix group:UT(3,p)

GAP implementation

Degrees of irreducible representations

The degrees of irreducible representations can be found using GAP's CharacterDegrees function:

gap> CharacterDegrees(SmallGroup(27,3));
[ [ 1, 9 ], [ 3, 2 ] ]

Character table

The full character table can be obtained as follows:

gap> Irr(CharacterTable(SmallGroup(27,3)));
[ Character( CharacterTable( <pc group of size 27 with 3 generators> ),
    [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( <pc group of size 27 with 3 generators> ),
    [ 1, E(3), 1, 1, E(3)^2, E(3), 1, 1, E(3)^2, E(3), E(3)^2 ] ),
  Character( CharacterTable( <pc group of size 27 with 3 generators> ),
    [ 1, E(3)^2, 1, 1, E(3), E(3)^2, 1, 1, E(3), E(3)^2, E(3) ] ),
  Character( CharacterTable( <pc group of size 27 with 3 generators> ),
    [ 1, 1, E(3), 1, 1, E(3), E(3)^2, 1, E(3), E(3)^2, E(3)^2 ] ),
  Character( CharacterTable( <pc group of size 27 with 3 generators> ),
    [ 1, E(3), E(3), 1, E(3)^2, E(3)^2, E(3)^2, 1, 1, 1, E(3) ] ),
  Character( CharacterTable( <pc group of size 27 with 3 generators> ),
    [ 1, E(3)^2, E(3), 1, E(3), 1, E(3)^2, 1, E(3)^2, E(3), 1 ] ),
  Character( CharacterTable( <pc group of size 27 with 3 generators> ),
    [ 1, 1, E(3)^2, 1, 1, E(3)^2, E(3), 1, E(3)^2, E(3), E(3) ] ),
  Character( CharacterTable( <pc group of size 27 with 3 generators> ),
    [ 1, E(3), E(3)^2, 1, E(3)^2, 1, E(3), 1, E(3), E(3)^2, 1 ] ),
  Character( CharacterTable( <pc group of size 27 with 3 generators> ),
    [ 1, E(3)^2, E(3)^2, 1, E(3), E(3), E(3), 1, 1, 1, E(3)^2 ] ),
  Character( CharacterTable( <pc group of size 27 with 3 generators> ),
    [ 3, 0, 0, 3*E(3), 0, 0, 0, 3*E(3)^2, 0, 0, 0 ] ),
  Character( CharacterTable( <pc group of size 27 with 3 generators> ),
    [ 3, 0, 0, 3*E(3)^2, 0, 0, 0, 3*E(3), 0, 0, 0 ] ) ]

A more display-friendly form:

gap> Display(CharacterTable(SmallGroup(27,3)));
CT1

      3  3  2  2  3  2  2  2  3  2  2  2

        1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j

X.1      1  1  1  1  1  1  1  1  1  1  1
X.2      1  A  1  1 /A  A  1  1 /A  A /A
X.3      1 /A  1  1  A /A  1  1  A /A  A
X.4      1  1  A  1  1  A /A  1  A /A /A
X.5      1  A  A  1 /A /A /A  1  1  1  A
X.6      1 /A  A  1  A  1 /A  1 /A  A  1
X.7      1  1 /A  1  1 /A  A  1 /A  A  A
X.8      1  A /A  1 /A  1  A  1  A /A  1
X.9      1 /A /A  1  A  A  A  1  1  1 /A
X.10     3  .  .  B  .  .  . /B  .  .  .
X.11     3  .  . /B  .  .  .  B  .  .  .

A = E(3)
  = (-1+ER(-3))/2 = b3
B = 3*E(3)
  = (-3+3*ER(-3))/2 = 3b3

Irreducible representations

The complete list of irreducible representations can be output using the IrreducibleRepresentations function.

gap> IrreducibleRepresentations(SmallGroup(27,3));
[ Pcgs([ f1, f2, f3 ]) -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ], 
  Pcgs([ f1, f2, f3 ]) -> [ [ [ E(3) ] ], [ [ 1 ] ], [ [ 1 ] ] ], 
  Pcgs([ f1, f2, f3 ]) -> [ [ [ E(3)^2 ] ], [ [ 1 ] ], [ [ 1 ] ] ], 
  Pcgs([ f1, f2, f3 ]) -> [ [ [ 1 ] ], [ [ E(3) ] ], [ [ 1 ] ] ], 
  Pcgs([ f1, f2, f3 ]) -> [ [ [ E(3) ] ], [ [ E(3) ] ], [ [ 1 ] ] ], 
  Pcgs([ f1, f2, f3 ]) -> [ [ [ E(3)^2 ] ], [ [ E(3) ] ], [ [ 1 ] ] ], 
  Pcgs([ f1, f2, f3 ]) -> [ [ [ 1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ] ], 
  Pcgs([ f1, f2, f3 ]) -> [ [ [ E(3) ] ], [ [ E(3)^2 ] ], [ [ 1 ] ] ], 
  Pcgs([ f1, f2, f3 ]) -> [ [ [ E(3)^2 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ] ], 
  Pcgs([ f1, f2, f3 ]) -> [ [ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ], 
      [ [ 1, 0, 0 ], [ 0, E(3), 0 ], [ 0, 0, E(3)^2 ] ], 
      [ [ E(3), 0, 0 ], [ 0, E(3), 0 ], [ 0, 0, E(3) ] ] ], 
  Pcgs([ f1, f2, f3 ]) -> [ [ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ], 
      [ [ 1, 0, 0 ], [ 0, E(3)^2, 0 ], [ 0, 0, E(3) ] ], 
      [ [ E(3)^2, 0, 0 ], [ 0, E(3)^2, 0 ], [ 0, 0, E(3)^2 ] ] ] ]