Conjugate-join-closed subnormal subgroup

From Groupprops
Jump to: navigation, search
BEWARE! This term is nonstandard and is being used locally within the wiki. [SHOW MORE]
This article defines a subgroup property: a property that can be evaluated to true/false given a group and a subgroup thereof, invariant under subgroup equivalence. View a complete list of subgroup properties[SHOW MORE]

Definition

Symbol-free definition

A subgroup of a group is termed conjugate-join-closed subnormal if the join of any collection of conjugate subgroups to it is a subnormal subgroup.

Relation with other properties

Stronger properties

Weaker properties

Metaproperties

Intermediate subgroup condition

YES: This subgroup property satisfies the intermediate subgroup condition: if a subgroup has the property in the whole group, it has the property in every intermediate subgroup.
ABOUT THIS PROPERTY: View variations of this property satisfying intermediate subgroup condition | View variations of this property not satisfying intermediate subgroup condition
ABOUT INTERMEDIATE SUBROUP CONDITION:View all properties satisfying intermediate subgroup condition | View facts about intermediate subgroup condition

If H is a conjugate-join-closed subnormal subgroup of G, and K is an intermediate subgroup of G containing H, H is also conjugate-join-closed subnormal in K.