Subgroup structure of Mathieu group:M9: Difference between revisions

From Groupprops
No edit summary
Line 11: Line 11:


{| class="sortable" border="1"
{| class="sortable" border="1"
! Automorphism class of subgroups !! List of subgroups !! Isomorphism class !! Order of subgroups !! Index of subgroups !! Number of conjugacy classes (=1 iff [[automorph-conjugate subgroup]]) !! Size of each conjugacy class (=1 iff [[normal subgroup]]) !! Total number of subgroups (=1 iff [[characteristic subgroup]]) !! Isomorphism class of quotient (if exists) !! Subnormal depth (if subnormal) !! [[Nilpotency class]] (if nilpotent)
! Automorphism class of subgroups !! List of subgroups !! Isomorphism class !! Order of subgroups !! Index of subgroups !! Number of conjugacy classes (=1 iff [[automorph-conjugate subgroup]]) !! Size of each conjugacy class (=1 iff [[normal subgroup]]) !! Total number of subgroups (=1 iff [[characteristic subgroup]]) !! Isomorphism class of quotient (if exists) !! Subnormal depth (if subnormal) !! [[Nilpotency class]] (if nilpotent) !! Note
|-
|-
| trivial subgroup || || [[trivial group]] || 1 || 72 || 1 || 1 || 1 || [[Mathieu group:M9]] || 1 || 0
| trivial subgroup || || [[trivial group]] || 1 || 72 || 1 || 1 || 1 || [[Mathieu group:M9]] || 1 || 0 || trivial
|-
|-
| || || [[cyclic group:Z2]] || 2 || 36 || 1 || 9 || 9 || -- || -- || 1
| || || [[cyclic group:Z2]] || 2 || 36 || 1 || 9 || 9 || -- || -- || 1 ||
|-
|-
| || || [[cyclic group:Z4]] || 4 || 18 || 3 || 9 || 27 || -- || -- || 1
| || || [[cyclic group:Z4]] || 4 || 18 || 3 || 9 || 27 || -- || -- || 1 ||
|-
|-
| || || [[quaternion group]] || 8 || 9 || 1 || 9 || 9 || -- || -- || 2
| || || [[quaternion group]] || 8 || 9 || 1 || 9 || 9 || -- || -- || 2 || 2-Sylow
|-
|-
| || || [[cyclic group:Z3]] || 3 || 24 || 1 || 4 || 4 || -- || 2 || 1
| || || [[cyclic group:Z3]] || 3 || 24 || 1 || 4 || 4 || -- || 2 || 1 ||
|-
|-
| [[3-Sylow subgroup of Mathieu group:M9]] || || [[elementary abelian group:E9]] || 9 || 8 || 1 || 1 || 1 || [[quaternion group]] || 1 || 1
| [[3-Sylow subgroup of Mathieu group:M9]] || || [[elementary abelian group:E9]] || 9 || 8 || 1 || 1 || 1 || [[quaternion group]] || 1 || 1 || 3-Sylow
|-
|-
|  || || [[symmetric group:S3]] || 6 || 12 || 1 || 12 || 12 || -- || -- || --
|  || || [[symmetric group:S3]] || 6 || 12 || 1 || 12 || 12 || -- || -- || -- ||
|-
|-
| || || [[generalized dihedral group for E9]] || 18 || 4 || 1 || 1 || 1 || [[Klein four-group]] || 1 || --
| || || [[generalized dihedral group for E9]] || 18 || 4 || 1 || 1 || 1 || [[Klein four-group]] || 1 || -- ||
|-
|-
| || || [[SmallGroup(36,9)]] || 36 || 2 || 3 || 1 || 3 || [[cyclic group:Z2]] || 1 || --
| || || [[SmallGroup(36,9)]] || 36 || 2 || 3 || 1 || 3 || [[cyclic group:Z2]] || 1 || -- ||
|-
|-
| whole group || || [[Mathieu group:M9]] || 72 || 1 || 1 || 1 || 1 || [[trivial group]] || 0 || --
| whole group || || [[Mathieu group:M9]] || 72 || 1 || 1 || 1 || 1 || [[trivial group]] || 0 || -- ||
|-
|-
| Total (10 rows) || -- || -- || -- || -- || 14 || -- || 68 || -- || -- || --
| Total (10 rows) || -- || -- || -- || -- || 14 || -- || 68 || -- || -- || -- ||
|}
|}

Revision as of 18:11, 12 July 2011

This article gives specific information, namely, subgroup structure, about a particular group, namely: Mathieu group:M9.
View subgroup structure of particular groups | View other specific information about Mathieu group:M9

Tables for quick information

FACTS TO CHECK AGAINST FOR SUBGROUP STRUCTURE: (finite solvable group)
Lagrange's theorem (order of subgroup times index of subgroup equals order of whole group, so both divide it), |order of quotient group divides order of group (and equals index of corresponding normal subgroup)
Sylow subgroups exist, Sylow implies order-dominating, congruence condition on Sylow numbers|congruence condition on number of subgroups of given prime power order
Hall subgroups exist in finite solvable|Hall implies order-dominating in finite solvable| normal Hall implies permutably complemented, Hall retract implies order-conjugate
MINIMAL, MAXIMAL: minimal normal implies elementary abelian in finite solvable | maximal subgroup has prime power index in finite solvable group

Table classifying subgroups up to automorphisms

Automorphism class of subgroups List of subgroups Isomorphism class Order of subgroups Index of subgroups Number of conjugacy classes (=1 iff automorph-conjugate subgroup) Size of each conjugacy class (=1 iff normal subgroup) Total number of subgroups (=1 iff characteristic subgroup) Isomorphism class of quotient (if exists) Subnormal depth (if subnormal) Nilpotency class (if nilpotent) Note
trivial subgroup trivial group 1 72 1 1 1 Mathieu group:M9 1 0 trivial
cyclic group:Z2 2 36 1 9 9 -- -- 1
cyclic group:Z4 4 18 3 9 27 -- -- 1
quaternion group 8 9 1 9 9 -- -- 2 2-Sylow
cyclic group:Z3 3 24 1 4 4 -- 2 1
3-Sylow subgroup of Mathieu group:M9 elementary abelian group:E9 9 8 1 1 1 quaternion group 1 1 3-Sylow
symmetric group:S3 6 12 1 12 12 -- -- --
generalized dihedral group for E9 18 4 1 1 1 Klein four-group 1 --
SmallGroup(36,9) 36 2 3 1 3 cyclic group:Z2 1 --
whole group Mathieu group:M9 72 1 1 1 1 trivial group 0 --
Total (10 rows) -- -- -- -- 14 -- 68 -- -- --