Characteristicity is transitive: Difference between revisions

From Groupprops
No edit summary
Line 1: Line 1:
{{trivial result}}
{{trivial result}}
{{subgroup metaproperty satisfaction}}
{{subgroup metaproperty satisfaction|
property = charcateristic subgroup|
metaproperty = transitive subgroup property}}


==Statement==
==Statement==

Revision as of 21:57, 7 August 2008

DIRECT: The fact or result stated in this article has a trivial/direct/straightforward proof provided we use the correct definitions of the terms involved
View other results with direct proofs
VIEW FACTS USING THIS: directly | directly or indirectly, upto two steps | directly or indirectly, upto three steps|
VIEW: Survey articles about this

This article gives the statement, and possibly proof, of a subgroup property (i.e., charcateristic subgroup) satisfying a subgroup metaproperty (i.e., transitive subgroup property)
View all subgroup metaproperty satisfactions | View all subgroup metaproperty dissatisfactions |Get help on looking up metaproperty (dis)satisfactions for subgroup properties
Get more facts about charcateristic subgroup |Get facts that use property satisfaction of charcateristic subgroup | Get facts that use property satisfaction of charcateristic subgroup|Get more facts about transitive subgroup property


Statement

Property-theoretic statement

The subgroup property of being characteristic satisfies the subgroup metaproperty of being transitive.

Verbal statement

A characteristic subgroup of a characteristic subgroup is characteristic in the whole group.

Symbolic statement

Let be a characteristic subgroup of , and a characteristic subgroup of . Then, is a characteristic subgroup of .

Proof

PLACEHOLDER FOR INFORMATION TO BE FILLED IN: [SHOW MORE]

References

Textbook references

  • Abstract Algebra by David S. Dummit and Richard M. Foote, 10-digit ISBN 0471433349, 13-digit ISBN 978-0471433347, More info, Page 135, Page 137 (Problem 8(b))
  • Groups and representations by Jonathan Lazare Alperin and Rowen B. Bell, ISBN 0387945261, More info, Page 17, Lemma 4
  • A Course in the Theory of Groups by Derek J. S. Robinson, ISBN 0387944613, More info, Page 28, Characteristic and Fully invariant subgroups, 1.5.6(ii)
  • Nilpotent groups and their automorphisms by Evgenii I. Khukhro, ISBN 3110136724, More info, Page 4, Section 1.1 (passing mention)