Book:DummitFoote

From Groupprops
Jump to: navigation, search
This is a book clip page. When referencing the book, transclude this page using Template:Booklink
View a complete list of books
View all terminology defined, facts proved, and facts stated in this book OR view all things referenced in this book
Abstract Algebra by David S. Dummit and Richard M. Foote, 10-digit ISBN 0471433349, 13-digit ISBN 978-0471433347

This is the third edition. Note that page numbers may differ in earlier and later editions.

About this book

General information

Abstract Algebra is written by David S. Dummit and Richard M. Foote, both working at the University of Vermont. The book covers a wide range of basic algebraic topics. According to the authors (preface to the third edition), the basic theme of this book is: the power and beauty that accrues from a rich interplay between different areas of mathematics. The emphasis throughout has been to motivate the introduction and development of important algebraic concepts using as many examples as possible. [The authors] have tried to touch on many of the central themes in elementary algebra in a manner suggesting the very natural development of these ideas.

Relevant contents in group theory

Part 1 (Group Theory) contains most of the book's group theory content:

  1. Introduction to Groups
    1. Basic axioms and examples (pages 16-21; exercises on pages 21-23), includes the following:
    2. Dihedral groups
    3. Symmetric groups
    4. Matrix groups
    5. The quaternion group
    6. Homomorphisms and isomorphisms
    7. Group actions
  2. Subgroups
    1. Definition and examples
    2. Centralizers and normalizers, stabilizers and kernels
    3. Cyclic groups and cyclic subgroups
    4. Subgroups generated by subsets of a group
    5. The lattice of subgroups of a group
  3. Quotient groups and homomorphisms
    1. Definitions and examples
    2. More on cosets and Lagrange's theorem
    3. The isomorphism theorems
    4. Composition series and the Holder program
    5. Transpositions and the alternating group
  4. Group actions
    1. Group actions and permutation representations
    2. Groups acting on themselves by left multiplication -- Cayley's theorem
    3. Groups acting on themselves by conjugation -- the class equation
    4. Automorphisms
    5. The Sylow theorems
    6. Simplicity of A_n
  5. Direct and semidirect products in Abelian groups
    1. Direct products
    2. The fundamental theorem of finitely generated Abelian groups
    3. Table of groups of small order
    4. Recognizing direct products
    5. Semidirect products
  6. Further topics in group theory
    1. p-groups, nilpotent groups and solvable groups
    2. Applications in groups of medium order
    3. A word on free groups

Style of definition

Most definitions that are introduced in-text are introduced formally, preceded by the word Definition. Typically, the block of definition text is followed by a list of examples, often from diverse fields. Some definitions are also introduced in the exercises, in a more informal manner. (This is in contrast with Artin, where a principal example often precedes the definition)

Style of proof

Most propositions stated formally in the main text are proved formally. A number of propositions are stated in exercises in the text at some point, and stated as theorems a little later in the text, with proof.

Use of the book

The book by Dummit and Foote is used as a primary text for advanced undergraduate algebra in a large number of American universities. PLACEHOLDER FOR INFORMATION TO BE FILLED IN: [SHOW MORE]