Procharacteristic subgroup: Difference between revisions

From Groupprops
(New page: {{wikilocal}} {{subgroup property}} ==Definition== ===Definition with symbols=== A subgroup <math>H</math> of a group <math>G</math> is termed '''procharacteristic''' in <math>G...)
 
 
(One intermediate revision by the same user not shown)
Line 6: Line 6:
===Definition with symbols===
===Definition with symbols===


A [[subgroup]] <math>H</math> of a [[group]] <math>G</math> is termed '''procharacteristic''' in <math>G</math> if, for any automorphism <math>\sigma</math> of <math>G</math>, there exists <math>g \in \langle H, \sigma(H) \rangle</math> such that <math>gHg^{-1} = \sigma(H)</math>.
* (''Left-action convention''): A [[subgroup]] <math>H</math> of a [[group]] <math>G</math> is termed '''procharacteristic''' in <math>G</math> if, for any automorphism <math>\sigma</math> of <math>G</math>, there exists <math>g \in \langle H, \sigma(H) \rangle</math> such that <math>gHg^{-1} = \sigma(H)</math>.
* (''Right-action convention''): A subgroup <math>H</math> of a group <math>G</math> is termed '''procharacteristic''' in <math>G</math> if, for any automorphism <math>\sigma</math> of <math>G</math>, there exists <math>g \in \langle H, H^\sigma\rangle</math> such that <math>H^g = H^\sigma</math>.


==Relation with other properties==
==Relation with other properties==
Line 12: Line 13:
===Stronger properties===
===Stronger properties===


* [[Weaker than::Characteristic subgroup]]
* [[Weaker than::Intermediately isomorph-conjugate subgroup]]
* [[Weaker than::Intermediately isomorph-conjugate subgroup]]


Line 17: Line 19:


* [[Stronger than::Automorph-conjugate subgroup]]
* [[Stronger than::Automorph-conjugate subgroup]]
* [[Stronger than::Weakly procharacteristic subgroup]]
* [[Stronger than::Pronormal subgroup]]
* [[Stronger than::Pronormal subgroup]]
* [[Stronger than::Weakly pronormal subgroup]]


==Facts==
==Facts==

Latest revision as of 01:48, 25 February 2009

BEWARE! This term is nonstandard and is being used locally within the wiki. [SHOW MORE]

This article defines a subgroup property: a property that can be evaluated to true/false given a group and a subgroup thereof, invariant under subgroup equivalence. View a complete list of subgroup properties[SHOW MORE]

Definition

Definition with symbols

  • (Left-action convention): A subgroup H of a group G is termed procharacteristic in G if, for any automorphism σ of G, there exists gH,σ(H) such that gHg1=σ(H).
  • (Right-action convention): A subgroup H of a group G is termed procharacteristic in G if, for any automorphism σ of G, there exists gH,Hσ such that Hg=Hσ.

Relation with other properties

Stronger properties

Weaker properties

Facts