Tensor product of linear representations
This article gives a basic definition in the following area: linear representation theory
View other basic definitions in linear representation theory |View terms related to linear representation theory |View facts related to linear representation theory
Definition
Suppose is a group and and are linear representations of over a field . The tensor product of the representations, denoted is a linear representation on the tensor product of the vector spaces defined in the following equivalent ways.
Definition using tensor product of linear maps
as follows: for , . Here, is the image of the pair in the natural homomorphism .
Conceptually, the mapping:
is described as follows: we know that up to isomorphism determine up to isomorphism. This means that any choice of automorphism of along with automorphism of induces an automorphism of . The mapping describes how.
Definition using outer tensor product
The tensor product can be defined as the composite of the outer tensor product of linear representations of and (which gives a linear representation of ) with the diagonal inclusion map , a homomorphism from to .
Definition in terms of symmetric bimonoidal category
The tensor product of linear representations over a field can be defined as the tensor product of representations over a symmetric bimonoidal category where the category is the category of -vector spaces, the additive operation is direct sum of vector spaces, and the multiplicative operation is tensor product of vector spaces.
Explicit definition in terms of block matrices
This definition works for finite-dimensional linear representations, though it also has infinite-dimensional analogues if we use infinitary matrices.
We use the same notation as in the previous definition, but assume further that and . Then can be identified with where the first coordinates represent one copy of , the next copies represent the next copy of , and so on. The explicit definition is now given as follows: for , first write the matrix for . Then, replace each cell of the matrix by a matrix that equals the cell value times . Overall, we get a matrix.
Definition over a commutative unital ring
Suppose is a group and and are linear representations of over a commutative unital ring . The tensor product of the representations, denoted is a linear representation on the tensor product of the modules defined as follows: for , . Here, is the image of the pair in the natural homomorphism .
Conceptually, the mapping:
is described as follows: we know that up to isomorphism determine up to isomorphism. This means that any choice of automorphism of along with automorphism of induces an automorphism of . The mapping describes how.
Note that the explicit matrix description of tensor product is available only if the modules and are free modules of finite rank over .
Related notions
- Generalization: tensor product of representations over a symmetric bimonoidal category
- Tensor product of permutation representations
Facts
- Degree of tensor product of linear representations is product of degrees
- Character of tensor product of linear representations is product of characters
- Tensor product of irreducible representation and one-dimensional representation is irreducible
- Tensor product of irreducible representations need not be irreducible