From Groupprops
Jump to: navigation, search
This article defines a group property: a property that can be evaluated to true/false for any given group, invariant under isomorphism
View a complete list of group properties
VIEW RELATED: Group property implications | Group property non-implications |Group metaproperty satisfactions | Group metaproperty dissatisfactions | Group property satisfactions | Group property dissatisfactions

This article is about a definition in group theory that is standard among the group theory community (or sub-community that dabbles in such things) but is not very basic or common for people outside.
VIEW: Definitions built on this | Facts about this: (facts closely related to T*-group, all facts related to T*-group) |Survey articles about this | Survey articles about definitions built on this
VIEW RELATED: Analogues of this | Variations of this | Opposites of this |
View a list of other standard non-basic definitions


Symbol-free definition

A group is said to be a T*-group if it satisfies the following equivalent conditions:

Definition with symbols

A group G is said to be a T*-group if whenever H \triangleleft K \triangleleft N \le G, we have H \triangleleft N. In other words, any subgroup N of G is a T-group.

Relation with other properties

Stronger properties

Weaker properties



This group property is subgroup-closed, viz., any subgroup of a group satisfying the property also satisfies the property
View a complete list of subgroup-closed group properties

Any subgroup of a T*-group is a T*-group. This follows from the definition.


This group property is quotient-closed, viz., any quotient of a group satisfying the property also has the property
View a complete list of quotient-closed group properties