Sporadic simple group

From Groupprops

This article is about a term related to the Classification of finite simple groups

This article defines a group property that can be evaluated, or makes sense, for simple groups

Template:List-clubbed

Definition

Symbol-free definition

A sporadic simple group is a finite simple group that is not an alternating group, classical group, or exceptional group of Lie type.

There are 26 sporadic simple groups.

The list

Group name Symbol Order Prime factorization of order Number of conjugacy classes
Mathieu group:M11 7920 10
Mathieu group:M12 95040 15
Mathieu group:M22 443520 12
Mathieu group:M23 10200960 17
Mathieu group:M24 244823040 26
Janko group:J1 175560 15
Janko group:J2 (also called the Hall-Janko group) or 604800 21
Janko group:J3 50232960 21
Janko group:J4 86775571046077562880 62
Conway group:Co1 4157776806543360000 101
Conway group:Co2 42305421312000 60
Conway group:Co3 495766656000 42
Fischer group:Fi22 64561751654400 65
Fischer group:Fi23 4089470473293004800 98
derived subgroup of Fischer group:Fi24 1255205709190661721292800 183
Higman-Sims group 44352000 24
McLaughlin group 898128000 24
Held group 4030387200 33
Rudvalis group 145926144000 36
Suzuki sporadic group 448345497600 43
O'Nan group 460815505920 30
Harada-Norton group 273030912000000 54
Lyons group 51765179004000000 53
Thompson group 90745943887872000 48
baby monster group 4154781481226426191177580544000000 [SHOW MORE] 184
monster group 808017424794512875886459904961710757005754368000000000 [SHOW MORE] 194

See also

Category: Sporadic simple groups