# Quasi-encoding of a group

From Groupprops

BEWARE!This term is nonstandard and is being used locally within the wiki. [SHOW MORE]

## Definition

### Basic definition

Let be a group. An **encoding** of over a binary alphabet (or equivalently, over any constant-sized alphabet) is the following data:

- An injective mapping from the group to the set of words in that alphabet. In other words, each element of the group is expressed as a word over the alphabet. This is called the
*code*for that element of the group. - An algorithm that takes in the codes for and outputs the code for .
- An algorithm that takes in the code for and outputs the code for .

A quasi-encoding becomes an encoding if we further have an algorithm that takes as input a word in the language and outputs whether or not it is a valid code-word.

## Properties

### Subgroups

Any quasi-encoding of a group naturally gives a quasi-encoding of any subgroup. Namely, we simply restrict the encoding function (the injective map from the group to the language) to the subgroup.