P-constraint is not subgroup-closed

From Groupprops

This article gives the statement, and possibly proof, of a group property (i.e., p-constrained group) not satisfying a group metaproperty (i.e., subgroup-closed group property).
View all group metaproperty dissatisfactions | View all group metaproperty satisfactions|Get help on looking up metaproperty (dis)satisfactions for group properties
Get more facts about p-constrained group|Get more facts about subgroup-closed group property|

Statement

It is possible to have a finite group , a subgroup , and a prime number such that is a p-constrained group but is not a p-constrained group.

Related facts

Facts used

  1. Constrained for a prime divisor implies not simple non-abelian

Proof

Let be the wreath product of Z2 and A5 defined as the wreath product with base group cyclic group:Z2 and acting group alternating group:A5, where we use the natural permutation action of the acting group on a set of five elements. More explicitly, is the external semidirect product of elementary abelian group:E32 and alternating group:A5 where the latter acts on the former by coordinate permutations induced by the permutations on a set of five elements.

The group has order

Let .

We note that:

  1. is -constrained: Indeed, is trivial, and is the base of the semidirect product, i.e., a normal subgroup isomorphic to elementary abelian group:E32. In particular, this is contained in any -Sylow subgroup , so is also the normal subgroup that forms the base of the semidirect product. The subgroup is a self-centralizing normal subgroup, because it is an abelian normal subgroup and the induced action by the quotient is faithful. Thus, we get the condition .
  2. has a subgroup isomorphic to alternating group:A5, namely the non-normal part of its realization as a semidirect product. This subgroup is a simple non-abelian group with dividing its order (i.e., 2 divides 60) and hence, by Fact (1), is not a -constrained group.