Minimal splitting field need not be unique

From Groupprops

Statement

In characteristic zero

Let be a finite group. It is possible for to have two distinct non-isomorphic minimal splitting fields and in characteristic zero. In other words, both and are splitting fields, no proper subfield of either is a splitting field, and is not isomorphic to .

In prime characteristic

Not sure whether there are examples here.

Related facts

Similar facts

Opposite facts

Proof

Example of the quaternion group

Further information: quaternion group, linear representation theory of quaternion group, faithful irreducible representation of quaternion group

The quaternion group of order eight has many different minimal splitting fields in characteristic zero. Specifically the following are true:

  • is not a splitting field.
  • Any field of the form where is a splitting field.

Thus, any field of the form , where , is a quadratic extension of satisfying the condition for being a splitting field, and hence is a minimal splitting field. There are multiple non-isomorphic fields of this type, such as and .