Linear representation theory of Mathieu group:M10
This article gives specific information, namely, linear representation theory, about a particular group, namely: Mathieu group:M10.
View linear representation theory of particular groups | View other specific information about Mathieu group:M10
Summary
| Item | Value |
|---|---|
| degrees of irreducible representations over a splitting field (such as or ) | 1, 1, 9, 9, 10, 10, 10, 16 grouped form: 1 (2 times), 9 (2 times), 10 (3 times), 16 (1 time) maximum: 16, number: 8, lcm: 720, sum of squares: 720 |
GAP implementation
Degrees of irreducible representations
The degrees of irreducible representations can be computed using the CharacterDegrees, CharacterTable, and MathieuGroup functions:
gap> CharacterDegrees(CharacterTable(MathieuGroup(10))); [ [ 1, 2 ], [ 9, 2 ], [ 10, 3 ], [ 16, 1 ] ]
Character table
The character table can be computed using the Irr, CharacterTable, and MathieuGroup functions:
gap> Irr(CharacterTable(MathieuGroup(10)));
[ Character( CharacterTable( Group(
[ (1,9,6,7,5)(2,10,3,8,4), (1,10,7,8)(2,9,4,6) ]) ),
[ 1, 1, 1, 1, 1, 1, 1, 1 ] ), Character( CharacterTable( Group(
[ (1,9,6,7,5)(2,10,3,8,4), (1,10,7,8)(2,9,4,6) ]) ),
[ 1, -1, 1, 1, 1, -1, -1, 1 ] ), Character( CharacterTable( Group(
[ (1,9,6,7,5)(2,10,3,8,4), (1,10,7,8)(2,9,4,6) ]) ),
[ 9, -1, 1, 1, 0, 1, 1, -1 ] ), Character( CharacterTable( Group(
[ (1,9,6,7,5)(2,10,3,8,4), (1,10,7,8)(2,9,4,6) ]) ),
[ 9, 1, 1, 1, 0, -1, -1, -1 ] ), Character( CharacterTable( Group(
[ (1,9,6,7,5)(2,10,3,8,4), (1,10,7,8)(2,9,4,6) ]) ),
[ 10, 0, -2, 2, 1, 0, 0, 0 ] ), Character( CharacterTable( Group(
[ (1,9,6,7,5)(2,10,3,8,4), (1,10,7,8)(2,9,4,6) ]) ),
[ 10, 0, 0, -2, 1, -E(8)-E(8)^3, E(8)+E(8)^3, 0 ] ),
Character( CharacterTable( Group(
[ (1,9,6,7,5)(2,10,3,8,4), (1,10,7,8)(2,9,4,6) ]) ),
[ 10, 0, 0, -2, 1, E(8)+E(8)^3, -E(8)-E(8)^3, 0 ] ),
Character( CharacterTable( Group(
[ (1,9,6,7,5)(2,10,3,8,4), (1,10,7,8)(2,9,4,6) ]) ),
[ 16, 0, 0, 0, -2, 0, 0, 1 ] ) ]