Isotopic groups are isomorphic

From Groupprops
Jump to: navigation, search

Statement

The following are equivalent for groups G and H:

  1. They are isotopic as magmas, i.e., there exists an Isotopy of magmas (?) between G and H.
  2. They are Isomorphic magmas (?), i.e., there exists an Isomorphism of magmas (?) between G and H.
  3. They are Isomorphic groups (?), i.e., there exists an Isomorphism of groups (?) between G and H.

Related facts

Facts used

  1. Homotopy of groups arises from a homomorphism
  2. Equivalence of definitions of isomorphism of groups

Proof

The equivalence of (1) and (2) follows from fact (1). Specifically, if a homotopy of groups is an isotopy, the homomorphism giving rise to it must also be bijective and hence must be an isomorphism. The equivalence of (2) and (3) follows from fact (2).