Group whose chief series are composition series

From Groupprops
Jump to: navigation, search
This article defines a group property: a property that can be evaluated to true/false for any given group, invariant under isomorphism
View a complete list of group properties
VIEW RELATED: Group property implications | Group property non-implications |Group metaproperty satisfactions | Group metaproperty dissatisfactions | Group property satisfactions | Group property dissatisfactions

Definition

A group whose chief series are composition series is a group that satisfies the following equivalent conditions:

  1. The group has finite composition length, and finite chief length, and the two lengths are equal.
  2. The group has a chief series of finite length that is also a composition series.
  3. The group has a chief series of finite length, and every chief series for the group is a composition series.

Note that it is not necessary for such a group that every composition series is a chief series. In fact, every composition series is a chief series if and only if the group is a T-group having finite composition length, i.e., it has finite composition length, and every subnormal subgroup is normal. This is because any subnormal series can be refined to a composition series for a group of finite composition length.

Relation with other properties

Stronger properties

Weaker properties