# Gamma group

From Groupprops

This article defines a group property: a property that can be evaluated to true/false for any given group, invariant under isomorphism

View a complete list of group propertiesVIEW RELATED: Group property implications | Group property non-implications |Group metaproperty satisfactions | Group metaproperty dissatisfactions | Group property satisfactions | Group property dissatisfactions

## Contents |

This article defines a term that has been used or referenced in a journal article or standard publication, but may not be generally accepted by the mathematical community as a standard term.[SHOW MORE]

## Definition

### Definition with symbols

A finite non-Abelian group is termed a -group if where is a normal elementary Abelian 2-subgroup and is a cyclic group of prime order acting irreducibly on (in other words, no proper subgroup of is -invariant).