Equivalence of definitions of finitely generated group
This article gives a proof/explanation of the equivalence of multiple definitions for the term finitely generated group
View a complete list of pages giving proofs of equivalence of definitions
Contents
Statement
The following are equivalent for a group :
- It has a finite generating set.
- Every generating set of the group has a subset that is finite and is also a generating set.
- The group has at least one minimal generating set and every minimal generating set of the group is finite.
- The minimum size of generating set of the group is finite.
- The group is a join of finitely many cyclic subgroups.
Proof
(1) implies (2)
Given: A group with a finite generating set
and a generating set
(not necessarily finite).
To prove: There exists a finite subset of that is also a generating set for
.
Proof:
Step no. | Assertion/construction | Facts used | Given data used | Previous steps used | Explantion |
---|---|---|---|---|---|
1 | For each element ![]() ![]() ![]() ![]() |
![]() ![]() ![]() |
Since ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
2 | Let ![]() ![]() ![]() ![]() |
![]() |
Step (1) | By Step (1), each ![]() ![]() ![]() | |
3 | ![]() ![]() ![]() |
![]() ![]() |
Step (1) | By Step (1), ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(2) implies (3)
Given: A group with the property that every generating set for
contains a finite subset that is also a generating set.
To prove: has at least one minimal generating set, and every minimal generating set of the group is finite.
Proof:
Proof of the first part: Start with as a generating set for itself. By the given, there exists a subset
that is finite and is a generating set for
. Let
be the collection of subsets of
that generate
.
is nonempty since
. Since it is finite, it must have a minimal element. Thus, there exists a minimal generating set for
.
Proof of the second part: Suppose is a generating set for
. If
is infinite, then it cannot be minimal, since by assumption, it contains a finite (and hence strictly smaller) generating set for
. Thus,
must be finite.
(3) implies (4)
This is direct.
(4) implies (1)
This is direct.
(1) implies (5)
For any finite generating set, the group is the union of the cyclic subgroups generated by the individual generators.
(5) implies (1)
If the group is a union of finitely many cyclic subgroups, pick one (cyclic) generator for each cyclic subgroup. The set comprising these generators is a finite generating set for the group.