# Direct product of Z8 and E8

This article is about a particular group, i.e., a group unique upto isomorphism. View specific information (such as linear representation theory, subgroup structure) about this groupView a complete list of particular groups (this is a very huge list!)[SHOW MORE]

## Contents

## Definition

This group is defined as the external direct product of the cyclic group of order eight and the elementary abelian group of order eight.

It is the abelian group of prime power order for the prime and corresponding to the partition .

## Arithmetic functions

Want to compare and contrast arithmetic function values with other groups of the same order? Check out groups of order 64#Arithmetic functions

## GAP implementation

### Group ID

This finite group has order 64 and has ID 246 among the groups of order 64 in GAP's SmallGroup library. For context, there are groups of order 64. It can thus be defined using GAP's SmallGroup function as:

`SmallGroup(64,246)`

For instance, we can use the following assignment in GAP to create the group and name it :

`gap> G := SmallGroup(64,246);`

Conversely, to check whether a given group is in fact the group we want, we can use GAP's IdGroup function:

`IdGroup(G) = [64,246]`

or just do:

`IdGroup(G)`

to have GAP output the group ID, that we can then compare to what we want.

### Other decriptions

Description | Functions used |
---|---|

DirectProduct(CyclicGroup(8),ElementaryAbelianGroup(8)) |
DirectProduct, CyclicGroup, and ElementaryAbelianGroup |

DirectProduct(CyclicGroup(8),CyclicGroup(2),CyclicGroup(2),CyclicGroup(2)) |
DirectProduct, CyclicGroup |