Centralizer of coprime automorphism in homomorphic image equals image of centralizer

From Groupprops

This article states and (possibly) proves a fact about a finite group and a Coprime automorphism group (?): a subgroup of the automorphism group whose order is relatively prime to the order of the group itself.
View other such facts

Statement

Suppose is a finite group and is an automorphism of whose order is coprime to the order of . Suppose is a normal -invariant subgroup of , and let denote the quotient map. Then, has a natural induced action on the quotient group , and we have:

.

Related facts

Applications

References

Textbook references