Central factor-extensible automorphism

From Groupprops
Jump to: navigation, search
BEWARE! This term is nonstandard and is being used locally within the wiki. [SHOW MORE]
This is a variation of extensible automorphism|Find other variations of extensible automorphism |

Definition

Symbol-free definition

An automorphism of a group is termed central factor-extensible if, for every embedding of the group as a central factor of a group, the automorphism can be extended to an automorphism of the bigger group.

Definition with symbols

An automorphism \sigma of a group G is termed central factor-extensible if, for every embedding of G as a central factor in a group H, there exists an automorphism \varphi of H whose restriction to G is \sigma.

Relation with other properties

Stronger properties

Facts

In a centerless group, every automorphism is central factor-extensible. This is because any central factor that is centerless as a group must be a direct factor.

Further information: Centerless implies every automorphism is central factor-extensible