Statement
Suppose
is a (1,1)-bi-Engel Lie ring, i.e.,
for all
. Then, we have that
. More explicitly:
Proof
Given: Lie ring
.
for all
.
To prove:
Proof: Fix
for this proof.
Step no. |
Assertion/construction |
Facts used |
Given data used |
Previous steps used |
Explanation
|
1 |
![{\displaystyle [[a,b],[c,d]]+[[c,b],[a,d]]=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1466054c5b35f2eafb58fb336b4e2567960a1236) |
|
Lie bracket is linear |
|
Polarize the original identity, setting . For , take the values respectively, subtract, and simplify.
|
2 |
![{\displaystyle [[a,b],[c,d]]=[[a,d],[c,b]]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/928b181178c3e5bc18b0b02bc19051ca50edf2a0) |
|
Lie bracket is skew-symmetric |
Step (1) |
In Step (1), use skew symmetry between and .
|
3 |
and . |
|
Lie bracket is skew-symmetric |
|
Use skew symmetry twice within each
|
4 |
![{\displaystyle [[b,a],[d,c]]+[[d,a],[b,c]]=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/32d6ae407e5cb94c0853ada71892fd38cc71e7bd) |
|
Lie bracket is linear |
|
Identical reasoning as Step (1), letter roles changed: now take . For , take the values respectively, subtract, and simplify.
|
5 |
![{\displaystyle [[a,b],[c,d]]+[[a,d],[c,b]]=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f31e2c4d04667b018a4ecc86beaebd5ce20f930d) |
|
|
Steps (3), (4) |
Step-combination direct
|
6 |
![{\displaystyle 2[[a,b],[c,d]]=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5f88052f88a0eb4a3d2d0f36ad1554e2f1eece76) |
|
|
Steps (2), (5) |
Step-combination direct
|