Sporadic simple group
This article is about a term related to the Classification of finite simple groups
This article defines a group property that can be evaluated, or makes sense, for simple groups
Definition
Symbol-free definition
A sporadic simple group is a finite simple group that is not an alternating group, classical group, or exceptional group of Lie type.
There are 26 sporadic simple groups.
The list
| Group name | Symbol | Order | Prime factorization of order | Number of conjugacy classes |
|---|---|---|---|---|
| Mathieu group:M11 | 7920 | 10 | ||
| Mathieu group:M12 | 95040 | 15 | ||
| Mathieu group:M22 | 443520 | 12 | ||
| Mathieu group:M23 | 10200960 | 17 | ||
| Mathieu group:M24 | 244823040 | 26 | ||
| Janko group:J1 | 175560 | 15 | ||
| Janko group:J2 (also called the Hall-Janko group) | or | 604800 | 21 | |
| Janko group:J3 | 50232960 | 21 | ||
| Janko group:J4 | 86775571046077562880 | 62 | ||
| Conway group:Co1 | 4157776806543360000 | 101 | ||
| Conway group:Co2 | 42305421312000 | 60 | ||
| Conway group:Co3 | 495766656000 | 42 | ||
| Fischer group:Fi22 | 64561751654400 | 65 | ||
| Fischer group:Fi23 | 4089470473293004800 | 98 | ||
| derived subgroup of Fischer group:Fi24 | 1255205709190661721292800 | 183 | ||
| Higman-Sims group | 44352000 | 24 | ||
| McLaughlin group | 898128000 | 24 | ||
| Held group | 4030387200 | 33 | ||
| Rudvalis group | 145926144000 | 36 | ||
| Suzuki sporadic group | 448345497600 | 43 | ||
| O'Nan group | 460815505920 | 30 | ||
| Harada-Norton group | 273030912000000 | 54 | ||
| Lyons group | 51765179004000000 | 53 | ||
| Thompson group | 90745943887872000 | 48 | ||
| baby monster group | 4154781481226426191177580544000000 | [SHOW MORE] | 184 | |
| monster group | 808017424794512875886459904961710757005754368000000000 | [SHOW MORE] | 194 |