Focal subgroup theorem

From Groupprops
Revision as of 22:46, 11 September 2011 by Vipul (talk | contribs) (→‎Initial observations)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

This article gives the statement and possibly, proof, of an implication relation between two subgroup properties. That is, it states that every subgroup satisfying the first subgroup property (i.e., Sylow subgroup) must also satisfy the second subgroup property (i.e., subgroup whose focal subgroup equals its intersection with the commutator subgroup)
View all subgroup property implications | View all subgroup property non-implications
Get more facts about Sylow subgroup|Get more facts about subgroup whose focal subgroup equals its intersection with the commutator subgroup

Statement

Let P be a p-Sylow subgroup of a finite group G and let:

P0=xy1x,yP,gG,gxg1=y.

In other words, P0 is the focal subgroup of P in G.

Then:

PG=P0

In other words, P is a subgroup whose focal subgroup equals its intersection with the commutator subgroup.

Related facts

Facts used

For the proof using linear representation theory

  1. Brauer's induction theorem

For the proof using the transfer homomorphism

  1. Product decomposition for element in terms of transfer homomorphism

Proof

Given: A finite group G, a p-Sylow subgroup P. P0 is the focal subgroup of P, defined by:

P0=xy1x,yP,gG,gxg1=y.

Further, we have:

G=[G,G]=xy1x,yG,gG,gxg1=y.

and:

P=[P,P]=xy1x,yP,gP,gxg1=y.

To prove: P0=PG.

Initial observations

Step no. Assertion/construction Facts used Given data used Previous steps used Explanation
1 PP0PG [SHOW MORE]
2 P0 is normal in P and P/P0 is abelian. Step (1) This follows from the part of Step (1) that asserts that PP0.
3 Let p1,p2,,pm be the distinct prime divisors of |G| with p=p1. For each pi, pick a pi-Sylow subgroup Pi such that P1=P.
4 Any gG can be expressed as a product g=g1g2gm where each gi is conjugate to some hiPi and the gi commute pairwise. Fact (2) Step (3) [SHOW MORE]
5 If g1 (continuing notation from Step (4), though it does not really matter) is conjugate to h1P1 and also conjugate to h1P1 then h1h1'1P0. [SHOW MORE]
6 Let λ be a linear character (i.e., the character of a one-dimensional representation) of P whose kernel contains P0. The function θ(g)=λ(h1), where h1 is as described in Step (4), is well-defined Steps (4), (5) [SHOW MORE]
7 Continuing with the notation of Step (6), θ is a class function on G. [SHOW MORE]
8 Continuing with the notation of Step (6), θ is a linear character of G. In other words, θ(gg)=θ(g)θ(g) for all g,gG. This critical step is unclear
9 For any linear character λ of P whose kernel contains P0, there is a linear character θ of G that extends λ, i.e., the restriction of θ to P is λ. Steps (6)-(8) Step-combination direct, plus: [SHOW MORE]
10 PGP0. [SHOW MORE]
11 P0=PG. Steps (1), (10) Step-combination direct.

Proof using the transfer homomorphism

We have P0PG, with P0 normal in P and P/P0 abelian. In particular, we can construct the transfer homomorphism τ:GP/P0. Let φ:PP/P0 be the quotient map.

Claim: The restriction of τ to P is surjective to P/P0.

Proof: For any xP, we have, by fact (1), a collection of elements x1,x2,,xtG and nonnegative integers r1,r2,,rt such that ri=[G:P], and we have:

xixrixi1H,τ(x)=i=1txixrixi1modP0.

Since we chose xP, and P/P0 is abelian, we can rearrange terms to obtain:

τ(x)=i=1txrii=1txrixixrixi1modP0.

Every term in the second product is of the form xri(xixrixi1), which is of the form ab1 with a,bP conjugate in G (here a=xri). In particular, every term in the second product is in P0, and we obtain:

τ(x)=i=1txrimodP0,

which, since ri=[G:P], reduces to:

τ(x)=x[G:P]modP0.

Note now that since P is p-Sylow, [G:P] is relatively prime to p, and the map xx[G:P] is a bijection from P/P0 to itself. Thus, τ, restricted to P, surjects to P/P0.

Proof using the claim: Let K be the kernel of τ:GP/P0.

Since K is a kernel of a map to an abelian group, [G,G]K. Thus, P0[G,G]PKP. The restriction of τ to P is a bijective map from P/(PK) to P/P0 (surjective by the claim, and injective because we've quotiented by the kernel). Thus, the size of PK equals the size of P0 forcing P0=[G,G]P=KP. In particular, P0=[G,G]P.

References

Journal references

Textbook references

  • Finite Groups by Daniel Gorenstein, ISBN 0821843427, More info, Page 250, Theorem 3.4, Section 7.3 (Transfer and the focal subgroup)