Group in which every automorph-conjugate subgroup is characteristic

From Groupprops

BEWARE! This term is nonstandard and is being used locally within the wiki. [SHOW MORE]

This article defines a group property: a property that can be evaluated to true/false for any given group, invariant under isomorphism
View a complete list of group properties
VIEW RELATED: Group property implications | Group property non-implications |Group metaproperty satisfactions | Group metaproperty dissatisfactions | Group property satisfactions | Group property dissatisfactions

Definition

A group is termed ACIC or automorph-conjugate implies characteristic if it satisfies the following equivalent conditions:

Formalisms

In terms of the subgroup property collapse operator

This group property can be defined in terms of the collapse of two subgroup properties. In other words, a group satisfies this group property if and only if every subgroup of it satisfying the first property ({{{1}}}Property "Defining ingredient" (as page type) with input value "{{{1}}}" contains invalid characters or is incomplete and therefore can cause unexpected results during a query or annotation process.) satisfies the second property ({{{2}}}Property "Defining ingredient" (as page type) with input value "{{{2}}}" contains invalid characters or is incomplete and therefore can cause unexpected results during a query or annotation process.), and vice versa.
View other group properties obtained in this way

The property of being an ACIC-group can be viewed as the collapse:

Automorph-conjugate subgroup = Characteristic subgroup

Relation with other properties

Stronger properties

Weaker properties