Function restriction expression
This page describes a formal expression, or formalism, that can be used to describe certain subgroup properties.
View a complete list of formal expressions for subgroup properties OR [[:Category:{{{1}}}|View subgroup properties expressible using this formalism]]
Definition
Main definition
A function restriction formal expression is the expression of a subgroup property using the function restriction formalism. A typical function restriction formal expression looks like:
meaning that every function satisfying on restricts to a function satisfying in the set corresponding to .
Composition operator
Composition rule
Let and be subgroup properties. Then if , we have:
For full proof, refer: composition rule for function restriction
Corollary for left transiter
Let be a subgroup property. Then, if , .
This in particular means that the left transiter for is weaker than . In fact, a stronger result holds: if is a right tight restriction formal expression for (that is, cannot be strengthened further) then is precisely the left transiter of .
An example is where is the property of being normal. Setting as the property of being an inner automorphism and as the property of being an automorphism gives a right tight restriction formal expression for . Hence, the left transiter is the property with both left side and right side being the property of being an automorphism. This is the subgroup property of being characteristic.