Element structure of groups of order 64: Difference between revisions
No edit summary |
|||
Line 14: | Line 14: | ||
|- | |- | ||
| [[semidirect product of Z16 and Z4 of M-type]] || 27 || [[direct product of Z16 and Z4]] || 26 || via class two Lie cring|| || || || || | | [[semidirect product of Z16 and Z4 of M-type]] || 27 || [[direct product of Z16 and Z4]] || 26 || via class two Lie cring|| || || || || | ||
|- | |- | ||
| [[M64]] || 51 || [[direct product of Z32 and Z2]] || 50 || via class two Lie cring || || || || || | | [[M64]] || 51 || [[direct product of Z32 and Z2]] || 50 || via class two Lie cring || || || || || | ||
Line 26: | Line 24: | ||
|- | |- | ||
| [[central product of M16 and Z8 over common Z2]] || 86 || [[direct product of Z8 and Z4 and Z2]] || 83 || via class two Lie cring || || || || | | [[central product of M16 and Z8 over common Z2]] || 86 || [[direct product of Z8 and Z4 and Z2]] || 83 || via class two Lie cring || || || || | ||
|- | |||
| || 112 || [[direct product of Z8 and Z4 and Z2]] || 83 || via class two Lie cring || || || || | |||
|- | |||
| || 184 || [[direct product of Z16 and V4]] || 183 || via class two Lie cring || || || || | |||
|- | |||
| || 185 || [[direct product of Z16 and V4]] || 183 || via class two Lie cring || || || || | |||
|- | |||
| || 195 || [[direct product of Z4 and Z4 and V4]] || 192 || via class two Lie cring || || || || | |||
|- | |||
| || 198 || [[direct product of Z4 and Z4 and V4]] || 192 || via class two Lie cring || || || || | |||
|- | |||
| || 247 || [[direct product of Z8 and E8]] || 246 || via class two Lie cring || || || || | |||
|- | |||
| || 248 || [[direct product of Z8 and E8]] || 246 || via class two Lie cring || || || || | |||
|- | |||
| || 249 || [[direct product of Z8 and E8]] || 246 || via class two Lie cring || || || || | |||
|- | |||
| || 263 || [[direct product of E16 and Z4]] || 260 || via class two Lie cring || || || || | |||
|- | |||
| || 266 || [[direct product of E16 and Z4]] || 260 || via class two Lie cring || || || || | |||
|- | |||
| [[semidirect product of Z16 and Z4 via fifth power map]] || 28 || [[direct product of Z16 and Z4]] || 26 || ? || || || || || | |||
|- | |||
| || 64 || [[direct product of Z4 and Z4 and Z4]] || 55 || ? || || || || || | |||
|- | |||
| || 82 || [[direct product of Z4 and Z4 and Z4]] || 55 || ? || || || || || | |||
|- | |||
| || 17 || [[direct product of Z8 and Z4 and Z2]] || 83 || ? || || || || || | |||
|- | |||
| || 25 || [[direct product of Z8 and Z4 and Z2]] || 83 || ? || || || || || | |||
|- | |||
| || 113 || [[direct product of Z8 and Z4 and Z2]] || 83 || ? || || || || || | |||
|- | |||
| || 114 || [[direct product of Z8 and Z4 and Z2]] || 83 || ? || || || || || | |||
|- | |||
| || 56 || [[direct product of Z4 and Z4 and V4]] || 192 || ? || || || || || | |||
|- | |||
| || 61 || [[direct product of Z4 and Z4 and V4]] || 192 || ? || || || || || | |||
|- | |||
| || 77 || [[direct product of Z4 and Z4 and V4]] || 192 || ? || || || || || | |||
|- | |||
| [[direct product of SmallGroup(32,33) and Z2]] || 209 || [[direct product of Z4 and Z4 and V4]] || 192 || via class three Lie cring || || || || || | |||
|- | |||
| || 210 || [[direct product of Z4 and Z4 and V4]] || 192 || ? || || || || || | |||
|} | |||
|} | |} |
Revision as of 05:13, 4 December 2010
This article gives specific information, namely, element structure, about a family of groups, namely: groups of order 64.
View element structure of group families | View element structure of groups of a particular order |View other specific information about groups of order 64
Pairs where one of the groups is abelian
There are 29 pairs of groups that are 1-isomorphic with the property that one of them is abelian. Of these, some pairs share the abelian group part, as the table below shows:
|}