Finitely generated group: Difference between revisions

From Groupprops
Line 38: Line 38:
| [[Weaker than::Finitely generated nilpotent group]] || [[nilpotent group]] || {{intermediate notions short|finitely generated group|finitely generated nilpotent group}} || {{intermediate notions short|nilpotent group|finitely generated nilpotent group}} || equivalent to abelianization being finitely generated
| [[Weaker than::Finitely generated nilpotent group]] || [[nilpotent group]] || {{intermediate notions short|finitely generated group|finitely generated nilpotent group}} || {{intermediate notions short|nilpotent group|finitely generated nilpotent group}} || equivalent to abelianization being finitely generated
|-
|-
| [[Weaker than::Finitely generated solvable group]] || [[solvable group]] || {{intermediate notions short|finitely generated group|finitely generated solvable group}} || {{intermediate notions short|solvable group|finitely generated solvable group}}
| [[Weaker than::Finitely generated solvable group]] || [[solvable group]] || {{intermediate notions short|finitely generated group|finitely generated solvable group}} || {{intermediate notions short|solvable group|finitely generated solvable group}} ||
|-
|-
| [[Weaker than::Finitely generated periodic group]] || [[periodic group]] || {{intermediate notions short|finitely generated group|finitely generated periodic group}} | {{intermediate notions short|periodic group|finitely generated periodic group}} ||  
| [[Weaker than::Finitely generated periodic group]] || [[periodic group]] || {{intermediate notions short|finitely generated group|finitely generated periodic group}} || {{intermediate notions short|periodic group|finitely generated periodic group}} ||  
|}
|}



Revision as of 02:24, 23 May 2010

Definition

Symbol-free definition

A group is said to be finitely generated if it has a finite generating set.


This article is about a standard (though not very rudimentary) definition in group theory. The article text may, however, contain more than just the basic definition
VIEW: Definitions built on this | Facts about this: (facts closely related to Finitely generated group, all facts related to Finitely generated group) |Survey articles about this | Survey articles about definitions built on this
VIEW RELATED: Analogues of this | Variations of this | Opposites of this |
View a complete list of semi-basic definitions on this wiki

This article defines a group property that is pivotal (i.e., important) among existing group properties
View a list of pivotal group properties | View a complete list of group properties [SHOW MORE]

This is a variation of finite group|Find other variations of finite group |

Relation with other properties

Stronger properties

Property Meaning Proof of implication Proof of strictness (reverse implication failure) Intermediate notions
Finite group |FULL LIST, MORE INFO
Slender group every subgroup is finitely generated (by definition) finitely generated not implies slender |FULL LIST, MORE INFO
Finitely presentable group has a presentation with finitely many generators and finitely many relations finitely presentable implies finitely generated finitely generated not implies finitely presentable |FULL LIST, MORE INFO

Conjunction with other properties

Conjunction Other component of conjunction Intermediate notions between finitely generated group and conjunction Intermediate notions between other component and conjunction Additional comments
Finitely generated free group Free group |FULL LIST, MORE INFO |FULL LIST, MORE INFO A finitely generated free group is a group with finite freely generating set
Finitely generated abelian group abelian group |FULL LIST, MORE INFO |FULL LIST, MORE INFO turns out to be a direct product of finitely many cyclic groups by the structure theorem for finitely generated abelian groups
Finitely generated residually finite group residually finite group |FULL LIST, MORE INFO |FULL LIST, MORE INFO
Finitely generated Hopfian group Hopfian group |FULL LIST, MORE INFO |FULL LIST, MORE INFO
Finitely generated nilpotent group nilpotent group |FULL LIST, MORE INFO |FULL LIST, MORE INFO equivalent to abelianization being finitely generated
Finitely generated solvable group solvable group |FULL LIST, MORE INFO |FULL LIST, MORE INFO
Finitely generated periodic group periodic group |FULL LIST, MORE INFO |FULL LIST, MORE INFO

Weaker properties

Property Meaning Proof of implication Proof of strictness (reverse implication failure) Intermediate notions
Countable group |FULL LIST, MORE INFO
Group with finitely many homomorphisms to any finite group for any fixed finite group, there are finitely many homomorphisms from the given group to that group |FULL LIST, MORE INFO

Opposite properties

  • Locally finite group is a group where every finitely generated subgroup is finite. A group is locally finite and finitely generated if and only if it is finite.

Effect of property operators

The hereditarily operator

Applying the hereditarily operator to this property gives: slender group

A slender group, or Noetherian group, is a group such that all its subgroups are finitely generated.

Testing

GAP command

This group property can be tested using built-in functionality of Groups, Algorithms, Programming (GAP).
The GAP command for this group property is:IsFinitelyGeneratedGroup
View GAP-testable group properties