Projective special linear group: Difference between revisions

From Groupprops
(Created page with '==Particular cases== ===Finite fields=== For <math>q = 2</math>, <math>PSL(n,q) = SL(n,q) = PGL(n,q) = GL(n,q)</math>. For <math>q</math> a power of two, <math>PSL(n,q) = SL(n,…')
 
Line 3: Line 3:
===Finite fields===
===Finite fields===


For <math>q = 2</math>, <math>PSL(n,q) = SL(n,q) = PGL(n,q) = GL(n,q)</math>. For <math>q</math> a power of two, <math>PSL(n,q) = SL(n,q)</math> but this is not equal to <math>GL(n,q)</math>.
Some facts:
 
* For <math>q = 2</math>, <math>PSL(n,q) = SL(n,q) = PGL(n,q) = GL(n,q)</math>. For <math>q</math> a power of two, <math>PSL(n,q) = SL(n,q)</math> but this is not equal to <math>GL(n,q)</math>.
* [[Projective special linear group equals alternating group in only finitely many cases]]: All those cases are listed in the table below.
* [[Projective special linear group is simple]] except for finitely many cases, all of which are listed below.


{| class="wikitable" border="1"
{| class="wikitable" border="1"
!Size of field !! Order of matrices !! Common name for the projective special linear group
!Size of field !! Order of matrices !! Common name for the projective special linear group !! Order of group !! Comment
|-
|-
| <math>q</math> || 1 || [[Trivial group]]
| <math>q</math> || 1 || [[Trivial group]] || <math>1</math> || Trivial
|-
|-
| 2 || 2 || [[Symmetric group:S3]]
| 2 || 2 || [[Symmetric group:S3]] || <math>6 = 2 \cdot 3</math> || [[supersolvable group|supersolvable]] but not [[nilpotent group|nilpotent]]. Not simple.
|-
|-
| 3 || 2 || [[Alternating group:A4]]
| 3 || 2 || [[Alternating group:A4]] || <math>12 = 2^2 \cdot 3</math> || [[solvable group|solvable]] but not [[supersolvable group]]. Not simple.
|-
|-
| 4 || 2 || [[Alternating group:A5]]
| 4 || 2 || [[Alternating group:A5]] || <math>60 = 2^2 \cdot 3 \cdot 5</math> || [[simple non-abelian group]] of smallest order.
|-
|-
| 5 || 2 || [[Alternating group:A5]]
| 5 || 2 || [[Alternating group:A5]] || <math>60 = 2^2 \cdot 3 \cdot 5</math> || [[simple non-abelian group]] of smallest order.
|-
|-
| 7 || 2 || [[Projective special linear group:PSL(3,2)]]
| 7 || 2 || [[Projective special linear group:PSL(3,2)]] || <math>168 = 2^3 \cdot 3 \cdot 7</math> || [[simple non-abelian group]] of second smallest order.
|-
|-
| 9 || 2 || [[Alternating group:A6]]
| 9 || 2 || [[Alternating group:A6]] || <math>360 = 2^3 \cdot 2^3 \cdot 5</math> || simple non-abelian group.
|-
|-
| 2 || 3 ||[[Projective special linear group:PSL(3,2)]]
| 2 || 3 ||[[Projective special linear group:PSL(3,2)]] || <math>168 = 2^3 \cdot 3 \cdot 7</math> || simple non-abelian group of second smallest order.
|-
|-
| 3 || 3 ||[[Projective special linear group:PSL(3,3)]]
| 3 || 3 ||[[Projective special linear group:PSL(3,3)]] || <math>5616 = 2^4 \cdot 3^3 \cdot 13</math> || simple non-abelian group.
|}
|}

Revision as of 15:13, 6 August 2009

Particular cases

Finite fields

Some facts:

Size of field Order of matrices Common name for the projective special linear group Order of group Comment
1 Trivial group Trivial
2 2 Symmetric group:S3 supersolvable but not nilpotent. Not simple.
3 2 Alternating group:A4 solvable but not supersolvable group. Not simple.
4 2 Alternating group:A5 simple non-abelian group of smallest order.
5 2 Alternating group:A5 simple non-abelian group of smallest order.
7 2 Projective special linear group:PSL(3,2) simple non-abelian group of second smallest order.
9 2 Alternating group:A6 simple non-abelian group.
2 3 Projective special linear group:PSL(3,2) simple non-abelian group of second smallest order.
3 3 Projective special linear group:PSL(3,3) simple non-abelian group.