Element structure of groups of order 64: Difference between revisions
No edit summary |
|||
| Line 3: | Line 3: | ||
connective = of| | connective = of| | ||
order = 64}} | order = 64}} | ||
==Conjugacy class sizes== | |||
{| class="sortable" border="1" | |||
! Number of size 1 conjugacy classes !! Number of size 2 conjugacy classes !! Number of size 4 conjugacy classes !! Number of size 8 conjugacy classes !! Number of size 16 conjugacy classes !! Total number of conjugacy classes !! Total number of groups !! Nulpotency class(es) attained by these groups !! Description of groups !! List of GAP IDs (second part) | |||
|- | |||
| 64 || 0 || 0 || 0 || 0 || 64 || 11 || 1 || all the [[abelian group]]s of order 64 || <toggledisplay> 1, 2, 26, 50, 55, 83, 183, 192, 246, 260, 267</toggledisplay> | |||
|- | |||
| 16 || 24 || 0 || 0 || 0 || 40 || 31 || 2 || || <toggledisplay> 3, 17, 27, 29, 44, 51, 56, 57, 58, 59, 84, 85, 86, 87, 103, 112, 115, 126, 184, 185, 193, 194, 195, 196, 197, 198, 247, 248, 261, 262, 263</toggledisplay> | |||
|- | |||
| 8 || 12 || 8 || 0 || 0 || 28 || 60 || 2,3 || || <toggledisplay>6, 7, 15, 16, 20, 21, 22, 31, 45, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 88, 89, 95, 96, 97, 101, 104, 105, 106, 107, 108, 110, 113, 114, 116, 117, 118, 119, 120, 124, 127, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 250, 251, 252, 253</toggledisplay> | |||
|- | |||
| 8 || 0 || 14 || 0 || 0 || 22 || 10 || 2 || || <toggledisplay>73, 74, 75, 76, 77, 78, 79, 80, 81, 82</toggledisplay> | |||
|- | |||
| 4 || 30 || 0 || 0 || 0 || 34 || 7 || 2 || || <toggledisplay>199, 200, 201, 249, 264, 265, 266</toggledisplay> | |||
|- | |||
| 4 || 14 || 0 || 4 || 0 || 22 || 23 || 3, 4 || || <toggledisplay>38, 39, 40, 47, 48, 49, 146, 147, 148, 167, 168, 169, 173, 174, 175, 176, 179, 180, 181, 186, 187, 188, 189</toggledisplay> | |||
|- | |||
| 4 || 12 || 9 || 0 || 0 || 25 || 15 || 2 || || <toggledisplay>226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240</toggledisplay> | |||
|- | |||
| 4 || 6 || 12 || 0 || 0 || 24 || 38 || 2,3 || || <toggledisplay>4, 5, 18, 19, 23, 24, 25, 28, 30, 90, 91, 92, 93, 94, 98, 99, 100, 102, 109, 111, 121, 122, 123, 125, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 254, 255, 256</toggledisplay> | |||
|- | |||
| 4 || 4 || 9 || 2 || 0 || 19 || 31 || 3 || || <toggledisplay>8, 9, 10, 11, 12, 13, 14, 128, 129, 130, 131, 132, 133, 140, 141, 142, 143, 144, 145, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166</toggledisplay> | |||
|- | |||
| 4 || 2 || 6 || 4 || 0 || 16 || 9 || 3 || || <toggledisplay>149, 150, 151, 170, 171, 172, 177, 178, 182</toggledisplay> | |||
|- | |||
| 4 || 0 || 15 || 0 || 0 || 19 || 5 || 2 || || <toggledisplay>241, 242, 243, 244, 245</toggledisplay> | |||
|- | |||
| 2 || 15 || 0 || 0 || 2 || 19 || 3 || 5 || || <toggledisplay>52, 53, 54</toggledisplay> | |||
|- | |||
| 2 || 9 || 11 || 0 || 0 || 22 || 3 || 3 || || <toggledisplay>257, 258, 259</toggledisplay> | |||
|- | |||
| 2 || 5 || 5 || 4 || 0 || 16 || 9 || 3,4 || || <toggledisplay>41, 42, 43, 46, 152, 153, 154, 190, 191</toggledisplay> | |||
|- | |||
| 2 || 3 || 8 || 3 || 0 || 16 || 6 || 3 || || <toggledisplay>134, 135, 136, 137, 138, 139</toggledisplay> | |||
|- | |||
| 2 || 1 || 5 || 5 || 0 || 13 || 6 || 4 || || <toggledisplay>32, 33, 34, 35, 36, 37</toggledisplay> | |||
|} | |||
Here is the GAP code to generate this:<toggledisplay> | |||
We use the coded (not in-built) function [[GAP:ConjugacyClassSizeGroupingFull|ConjugacyClassSizeGroupingFull]] (follow link to get code): | |||
<pre>gap> C := ConjugacyClassSizeGroupingFull(64);; | |||
gap> D := List(C,x -> [x[1],x[2],Length(x[2]),Set(List(x[2],i->NilpotencyClassOfGroup(SmallGroup(64,i))))]); | |||
[ [ [ [ 1, 2 ], [ 2, 1 ], [ 4, 5 ], [ 8, 5 ] ], [ 32, 33, 34, 35, 36, 37 ], 6, [ 4 ] ], | |||
[ [ [ 1, 2 ], [ 2, 3 ], [ 4, 8 ], [ 8, 3 ] ], [ 134, 135, 136, 137, 138, 139 ], 6, [ 3 ] ], | |||
[ [ [ 1, 2 ], [ 2, 5 ], [ 4, 5 ], [ 8, 4 ] ], [ 41, 42, 43, 46, 152, 153, 154, 190, 191 ], 9, [ 3, 4 ] ], | |||
[ [ [ 1, 2 ], [ 2, 9 ], [ 4, 11 ] ], [ 257, 258, 259 ], 3, [ 3 ] ], [ [ [ 1, 2 ], [ 2, 15 ], [ 16, 2 ] ], [ 52, 53, 54 ], 3, [ 5 ] ], | |||
[ [ [ 1, 4 ], [ 2, 2 ], [ 4, 6 ], [ 8, 4 ] ], [ 149, 150, 151, 170, 171, 172, 177, 178, 182 ], 9, [ 3 ] ], | |||
[ [ [ 1, 4 ], [ 2, 4 ], [ 4, 9 ], [ 8, 2 ] ], [ 8, 9, 10, 11, 12, 13, 14, 128, 129, 130, 131, 132, 133, 140, 141, 142, 143, 144, 145, 155, 156, 157, | |||
158, 159, 160, 161, 162, 163, 164, 165, 166 ], 31, [ 3 ] ], | |||
[ [ [ 1, 4 ], [ 2, 6 ], [ 4, 12 ] ], [ 4, 5, 18, 19, 23, 24, 25, 28, 30, 90, 91, 92, 93, 94, 98, 99, 100, 102, 109, 111, 121, 122, 123, 125, 215, 216, | |||
217, 218, 219, 220, 221, 222, 223, 224, 225, 254, 255, 256 ], 38, [ 2, 3 ] ], | |||
[ [ [ 1, 4 ], [ 2, 12 ], [ 4, 9 ] ], [ 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240 ], 15, [ 2 ] ], | |||
[ [ [ 1, 4 ], [ 2, 14 ], [ 8, 4 ] ], [ 38, 39, 40, 47, 48, 49, 146, 147, 148, 167, 168, 169, 173, 174, 175, 176, 179, 180, 181, 186, 187, 188, 189 ], | |||
23, [ 3, 4 ] ], [ [ [ 1, 4 ], [ 2, 30 ] ], [ 199, 200, 201, 249, 264, 265, 266 ], 7, [ 2 ] ], | |||
[ [ [ 1, 4 ], [ 4, 15 ] ], [ 241, 242, 243, 244, 245 ], 5, [ 2 ] ], | |||
[ [ [ 1, 8 ], [ 2, 12 ], [ 4, 8 ] ], [ 6, 7, 15, 16, 20, 21, 22, 31, 45, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 88, 89, 95, 96, 97, 101, | |||
104, 105, 106, 107, 108, 110, 113, 114, 116, 117, 118, 119, 120, 124, 127, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, | |||
250, 251, 252, 253 ], 60, [ 2, 3 ] ], [ [ [ 1, 8 ], [ 4, 14 ] ], [ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82 ], 10, [ 2 ] ], | |||
[ [ [ 1, 16 ], [ 2, 24 ] ], [ 3, 17, 27, 29, 44, 51, 56, 57, 58, 59, 84, 85, 86, 87, 103, 112, 115, 126, 184, 185, 193, 194, 195, 196, 197, 198, 247, | |||
248, 261, 262, 263 ], 31, [ 2 ] ], [ [ [ 1, 64 ] ], [ 1, 2, 26, 50, 55, 83, 183, 192, 246, 260, 267 ], 11, [ 1 ] ] ]</pre> | |||
</toggledisplay> | |||
==1-isomorphism== | ==1-isomorphism== | ||
Revision as of 00:10, 12 June 2011
This article gives specific information, namely, element structure, about a family of groups, namely: groups of order 64.
View element structure of group families | View element structure of groups of a particular order |View other specific information about groups of order 64
Conjugacy class sizes
| Number of size 1 conjugacy classes | Number of size 2 conjugacy classes | Number of size 4 conjugacy classes | Number of size 8 conjugacy classes | Number of size 16 conjugacy classes | Total number of conjugacy classes | Total number of groups | Nulpotency class(es) attained by these groups | Description of groups | List of GAP IDs (second part) |
|---|---|---|---|---|---|---|---|---|---|
| 64 | 0 | 0 | 0 | 0 | 64 | 11 | 1 | all the abelian groups of order 64 | [SHOW MORE] |
| 16 | 24 | 0 | 0 | 0 | 40 | 31 | 2 | [SHOW MORE] | |
| 8 | 12 | 8 | 0 | 0 | 28 | 60 | 2,3 | [SHOW MORE] | |
| 8 | 0 | 14 | 0 | 0 | 22 | 10 | 2 | [SHOW MORE] | |
| 4 | 30 | 0 | 0 | 0 | 34 | 7 | 2 | [SHOW MORE] | |
| 4 | 14 | 0 | 4 | 0 | 22 | 23 | 3, 4 | [SHOW MORE] | |
| 4 | 12 | 9 | 0 | 0 | 25 | 15 | 2 | [SHOW MORE] | |
| 4 | 6 | 12 | 0 | 0 | 24 | 38 | 2,3 | [SHOW MORE] | |
| 4 | 4 | 9 | 2 | 0 | 19 | 31 | 3 | [SHOW MORE] | |
| 4 | 2 | 6 | 4 | 0 | 16 | 9 | 3 | [SHOW MORE] | |
| 4 | 0 | 15 | 0 | 0 | 19 | 5 | 2 | [SHOW MORE] | |
| 2 | 15 | 0 | 0 | 2 | 19 | 3 | 5 | [SHOW MORE] | |
| 2 | 9 | 11 | 0 | 0 | 22 | 3 | 3 | [SHOW MORE] | |
| 2 | 5 | 5 | 4 | 0 | 16 | 9 | 3,4 | [SHOW MORE] | |
| 2 | 3 | 8 | 3 | 0 | 16 | 6 | 3 | [SHOW MORE] | |
| 2 | 1 | 5 | 5 | 0 | 13 | 6 | 4 | [SHOW MORE] |
Here is the GAP code to generate this:[SHOW MORE]
1-isomorphism
Pairs where one of the groups is abelian
There are 29 pairs of groups that are 1-isomorphic with the property that one of them is abelian. Of these, some pairs share the abelian group part, as the table below shows. Of these, the only example of a group that is not of nilpotency class two is SmallGroup(64,25) (GAP ID: 25):
Here is a summary version:
| Nature of 1-isomorphism | Intermediate object | Number of 1-isomorphisms between non-abelian and abelian group of this type | Number of 1-isomorphisms between non-abelian and abelian group of this nature, not of any of the preceding types |
|---|---|---|---|
| linear halving generalization of Baer correspondence | class two Lie ring | 1 | 1 |
| cocycle halving generalization of Baer correspondence | class two Lie cring | 17 | 16 |
| cocycle skew reversal generalization of Baer correspondence | class two near-Lie cring | ? | ? |
| PLACEHOLDER FOR INFORMATION TO BE FILLED IN: [SHOW MORE] | PLACEHOLDER FOR INFORMATION TO BE FILLED IN: [SHOW MORE] | ? | ? |
Here is a long version: