Projective special linear group: Difference between revisions

From Groupprops
(Created page with '==Particular cases== ===Finite fields=== For <math>q = 2</math>, <math>PSL(n,q) = SL(n,q) = PGL(n,q) = GL(n,q)</math>. For <math>q</math> a power of two, <math>PSL(n,q) = SL(n,…')
 
No edit summary
 
(4 intermediate revisions by one other user not shown)
Line 3: Line 3:
===Finite fields===
===Finite fields===


For <math>q = 2</math>, <math>PSL(n,q) = SL(n,q) = PGL(n,q) = GL(n,q)</math>. For <math>q</math> a power of two, <math>PSL(n,q) = SL(n,q)</math> but this is not equal to <math>GL(n,q)</math>.
Some facts:


{| class="wikitable" border="1"
* For <math>q = 2</math>, <math>PSL(n,q) = SL(n,q) = PGL(n,q) = GL(n,q)</math>. For <math>q</math> a power of two, <math>PSL(n,q) = SL(n,q)</math> but this is not equal to <math>GL(n,q)</math>.
!Size of field !! Order of matrices !! Common name for the projective special linear group
* [[Projective special linear group equals alternating group in only finitely many cases]]: All those cases are listed in the table below.
* [[Projective special linear group is simple]] except for finitely many cases, all of which are listed below.
* The projective special linear group is isomorphic to the [[quotient group]] of the [[special linear group]] by its [[center]]. In symbols, <math>PSL(n, q) \cong SL(n, q) / Z(SL(n,q))</math>.
 
{| class="sortable" border="1"
!Size of field !! Order of matrices !! Common name for the projective special linear group !! Order of group !! Comment
|-
|-
| <math>q</math> || 1 || [[Trivial group]]
| <math>q</math> || 1 || [[Trivial group]] || <math>1</math> || Trivial
|-
|-
| 2 || 2 || [[Symmetric group:S3]]
| 2 || 2 || [[Symmetric group:S3]] || <math>6 = 2 \cdot 3</math> || [[supersolvable group|supersolvable]] but not [[nilpotent group|nilpotent]]. Not simple.
|-
|-
| 3 || 2 || [[Alternating group:A4]]
| 3 || 2 || [[Alternating group:A4]] || <math>12 = 2^2 \cdot 3</math> || [[solvable group|solvable]] but not [[supersolvable group]]. Not simple.
|-
|-
| 4 || 2 || [[Alternating group:A5]]
| 4 || 2 || [[Alternating group:A5]] || <math>60 = 2^2 \cdot 3 \cdot 5</math> || [[simple non-abelian group]] of smallest order.
|-
|-
| 5 || 2 || [[Alternating group:A5]]
| 5 || 2 || [[Alternating group:A5]] || <math>60 = 2^2 \cdot 3 \cdot 5</math> || [[simple non-abelian group]] of smallest order.
|-
|-
| 7 || 2 || [[Projective special linear group:PSL(3,2)]]
| 7 || 2 || [[Projective special linear group:PSL(3,2)]] || <math>168 = 2^3 \cdot 3 \cdot 7</math> || [[simple non-abelian group]] of second smallest order.
|-
|-
| 9 || 2 || [[Alternating group:A6]]
| 9 || 2 || [[Alternating group:A6]] || <math>360 = 2^3 \cdot 3^2 \cdot 5</math> || simple non-abelian group.
|-
|-
| 2 || 3 ||[[Projective special linear group:PSL(3,2)]]
| 2 || 3 ||[[Projective special linear group:PSL(3,2)]] || <math>168 = 2^3 \cdot 3 \cdot 7</math> || simple non-abelian group of second smallest order.
|-
|-
| 3 || 3 ||[[Projective special linear group:PSL(3,3)]]
| 3 || 3 ||[[Projective special linear group:PSL(3,3)]] || <math>5616 = 2^4 \cdot 3^3 \cdot 13</math> || simple non-abelian group.
|}
|}
==More information==
* [[Element structure of projective special linear group over a finite field]]
* [[Linear representation theory of projective special linear group over a finite field]]

Latest revision as of 00:44, 15 November 2023

Particular cases

Finite fields

Some facts:

Size of field Order of matrices Common name for the projective special linear group Order of group Comment
1 Trivial group Trivial
2 2 Symmetric group:S3 supersolvable but not nilpotent. Not simple.
3 2 Alternating group:A4 solvable but not supersolvable group. Not simple.
4 2 Alternating group:A5 simple non-abelian group of smallest order.
5 2 Alternating group:A5 simple non-abelian group of smallest order.
7 2 Projective special linear group:PSL(3,2) simple non-abelian group of second smallest order.
9 2 Alternating group:A6 simple non-abelian group.
2 3 Projective special linear group:PSL(3,2) simple non-abelian group of second smallest order.
3 3 Projective special linear group:PSL(3,3) simple non-abelian group.

More information