Function restriction formalism chart: Difference between revisions

From Groupprops
No edit summary
No edit summary
 
(17 intermediate revisions by the same user not shown)
Line 1: Line 1:
{| class="wikitable" border="1"
{| class="wikitable" border="1"
! Subgroup property !! Expression !! Endo-invariance !! Balanced !! Invariance !! Left-inner !! Quotient-hereditary invariance  
! [[Subgroup property]] !! [[Function restriction expression]] !! [[Endo-invariance property|Endo-invariance]] !! [[Balanced subgroup property (function restriction formalism)|Balanced]] !! [[Invariance property|Invariance]] !! [[Left-inner subgroup property|Left-inner]]!! Quotient-hereditary invariance  
|-
|-
|[[Normal subgroup]] || Inner <math>\to</math> Aut, Inner <math>\to</math> Function || Yes || No || Yes || Yes || Yes |-
|[[Normal subgroup]] || [[Inner automorphism|Inner]] <math>\to</math> [[Automorphism|Aut]], [[Inner automorphism|Inner]] <math>\to</math> Function || Yes || No || Yes || Yes || Yes  
|[[Characteristic subgroup]] || Aut <math>\to</math> Aut, Aut <math>\to</math> Function || Yes || Yes || Yes || No || No |-
|-
|[[Strictly characteristic subgroup]] || Surj. End <math>\to</math> Function, Surj. End. <math>\to</math> End. || Yes || No || Yes || No || Yes |- |}
|[[Characteristic subgroup]] || [[Automorphism|Aut]] <math>\to</math> [[Automorphism|Aut]], [[Automorphism|Aut]] <math>\to</math> Function || Yes || Yes || Yes || No || No  
|-
|[[Strictly characteristic subgroup]] || [[Surjective endomorphism|Surj. End]] <math>\to</math> Function, Surj. End. <math>\to</math> [[Endomorphism|End.]] || Yes || No || Yes || No || Yes
|-
|[[Fully invariant subgroup]] || [[Endomorphism|End.]] <math>\to</math> [[Endomorphism|End.]] || Yes || Yes || Yes || No || Yes
|-
|[[Injective endomorphism-invariant subgroup]] || [[Injective endomorphism|Inj. End.]]<math>\to</math> [[Endomorphism|End.]], Inj. end. <math>\to</math> Inj. End. || Yes || Yes || Yes || No || No
|-
|[[Central factor]] || [[Inner automorphism|Inner]] <math>\to</math> [[Inner automorphism|Inner]] || No || Yes || No || Yes || No
|-
|[[Transitively normal subgroup]] || [[Normal automorphism|Normal]] <math>\to</math> [[Normal automorphism|Normal]], [[Inner automorphism|Inner]] <math>\to</math> [[Normal automorphism|Normal]] || No || Yes || No || Yes || No
|-
|[[Conjugacy-closed normal subgroup]] || [[Class automorphism|Class]] <math>\to</math> [[Class automorphism|Class]], [[Inner automorphism|Inner]] <math>\to</math> [[Class automorphism|Class]] || No || Yes || No || Yes || ?
|-
|[[Retraction-invariant subgroup]] || [[Retraction]] <math>\to</math> [[Retraction]], [[Retraction]] <math>\to</math> Function || Yes || Yes || Yes || No || Yes
|-
| [[Powering-invariant subgroup]] || Rational power map <math>\to</math> Rational power map, Rational power map <math>\to</math> Function || No || Yes || Yes || No || ?
|-
| [[Local powering-invariant subgroup]] || Local powering <math>\to</math> Local powering, Local powering <math>\to</math> Function || No || Yes || Yes || No || ?
|}
 
Note:
 
* [[Endo-invariance property|Endo-invariance]] implies [[join-closed subgroup property|join-closed]]. {{proofat|[[Endo-invariance implies join-closed]]}}
* [[Balanced subgroup property|Balanced]] implies [[transitive subgroup property|transitive]]. Conversely, any function-restriction-expressible subgroup property that is transitive, must be balanced. {{proofat|[[Balanced implies transitive]]}}
* [[Invariance property|Invariance]] implies [[strongly intersection-closed subgroup property|strongly intersection-closed]]. {{proofat|[[Invariance implies intersection-closed]]}}
* [[Left-inner subgroup property|Left-inner]] implies [[left-extensibility-stable subgroup property|left-extensibility-stable]], that in turn implies [[intermediate subgroup condition]]. {{proofat|[[Left-extensibility-stable implies intermediate subgroup condition]]}}
* Quotient-hereditary invariance implies [[quotient-transitive subgroup property|quotient-transitive]]

Latest revision as of 03:47, 20 August 2021

Subgroup property Function restriction expression Endo-invariance Balanced Invariance Left-inner Quotient-hereditary invariance
Normal subgroup Inner Aut, Inner Function Yes No Yes Yes Yes
Characteristic subgroup Aut Aut, Aut Function Yes Yes Yes No No
Strictly characteristic subgroup Surj. End Function, Surj. End. End. Yes No Yes No Yes
Fully invariant subgroup End. End. Yes Yes Yes No Yes
Injective endomorphism-invariant subgroup Inj. End. End., Inj. end. Inj. End. Yes Yes Yes No No
Central factor Inner Inner No Yes No Yes No
Transitively normal subgroup Normal Normal, Inner Normal No Yes No Yes No
Conjugacy-closed normal subgroup Class Class, Inner Class No Yes No Yes ?
Retraction-invariant subgroup Retraction Retraction, Retraction Function Yes Yes Yes No Yes
Powering-invariant subgroup Rational power map Rational power map, Rational power map Function No Yes Yes No ?
Local powering-invariant subgroup Local powering Local powering, Local powering Function No Yes Yes No ?

Note: