Element structure of groups of order 64: Difference between revisions
(30 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
connective = of| | connective = of| | ||
order = 64}} | order = 64}} | ||
==Conjugacy class sizes== | |||
{{conjugacy class structure facts to check against}} | |||
===Grouping by conjugacy class sizes=== | |||
Here now is a grouping by [[conjugacy class size statistics of a finite group|conjugacy class sizes]]. Note that since [[number of conjugacy classes in group of prime power order is congruent to order of group modulo prime-square minus one]], all the values for the [[number of conjugacy classes]] are congruent to 64 mod 3, and hence congruent to 1 mod 3. | |||
{| class="sortable" border="1" | |||
! Number of size 1 conjugacy classes !! Number of size 2 conjugacy classes !! Number of size 4 conjugacy classes !! Number of size 8 conjugacy classes !! Number of size 16 conjugacy classes !! Total number of conjugacy classes !! Total number of groups !! Nilpotency class(es) attained by these groups !! Hall-Senior family/families !! List of GAP IDs (second part) | |||
|- | |||
| 64 || 0 || 0 || 0 || 0 || 64 || 11 || 1 || <math>\Gamma_1</math>, i.e., all the [[abelian group]]s of order 64 || <toggledisplay> 1, 2, 26, 50, 55, 83, 183, 192, 246, 260, 267</toggledisplay> | |||
|- | |||
| 16 || 24 || 0 || 0 || 0 || 40 || 31 || 2 || <math>\Gamma_2</math> || <toggledisplay> 3, 17, 27, 29, 44, 51, 56, 57, 58, 59, 84, 85, 86, 87, 103, 112, 115, 126, 184, 185, 193, 194, 195, 196, 197, 198, 247, 248, 261, 262, 263</toggledisplay> | |||
|- | |||
| 8 || 12 || 8 || 0 || 0 || 28 || 60 || 2,3 || <math>\Gamma_3</math> (class three) and <math>\Gamma_4</math> (class two) || <toggledisplay>6, 7, 15, 16, 20, 21, 22, 31, 45, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 88, 89, 95, 96, 97, 101, 104, 105, 106, 107, 108, 110, 113, 114, 116, 117, 118, 119, 120, 124, 127, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 250, 251, 252, 253</toggledisplay> | |||
|- | |||
| 8 || 0 || 14 || 0 || 0 || 22 || 10 || 2 || ? || <toggledisplay>73, 74, 75, 76, 77, 78, 79, 80, 81, 82</toggledisplay> | |||
|- | |||
| 4 || 30 || 0 || 0 || 0 || 34 || 7 || 2 || <math>\Gamma_5</math> || <toggledisplay>199, 200, 201, 249, 264, 265, 266</toggledisplay> | |||
|- | |||
| 4 || 14 || 0 || 4 || 0 || 22 || 23 || 3, 4 ||<math>\Gamma_8</math> || <toggledisplay>38, 39, 40, 47, 48, 49, 146, 147, 148, 167, 168, 169, 173, 174, 175, 176, 179, 180, 181, 186, 187, 188, 189</toggledisplay> | |||
|- | |||
| 4 || 12 || 9 || 0 || 0 || 25 || 15 || 2 || || <toggledisplay>226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240</toggledisplay> | |||
|- | |||
| 4 || 6 || 12 || 0 || 0 || 22 || 38 || 2,3 || <math>\Gamma_6</math> and <math>\Gamma_7</math> || <toggledisplay>4, 5, 18, 19, 23, 24, 25, 28, 30, 90, 91, 92, 93, 94, 98, 99, 100, 102, 109, 111, 121, 122, 123, 125, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 254, 255, 256</toggledisplay> | |||
|- | |||
| 4 || 4 || 9 || 2 || 0 || 19 || 31 || 3 || || <toggledisplay>8, 9, 10, 11, 12, 13, 14, 128, 129, 130, 131, 132, 133, 140, 141, 142, 143, 144, 145, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166</toggledisplay> | |||
|- | |||
| 4 || 2 || 6 || 4 || 0 || 16 || 9 || 3 || || <toggledisplay>149, 150, 151, 170, 171, 172, 177, 178, 182</toggledisplay> | |||
|- | |||
| 4 || 0 || 15 || 0 || 0 || 19 || 5 || 2 || || <toggledisplay>241, 242, 243, 244, 245</toggledisplay> | |||
|- | |||
| 2 || 15 || 0 || 0 || 2 || 19 || 3 || 5 || || <toggledisplay>52, 53, 54</toggledisplay> | |||
|- | |||
| 2 || 9 || 11 || 0 || 0 || 22 || 3 || 3 || || <toggledisplay>257, 258, 259</toggledisplay> | |||
|- | |||
| 2 || 5 || 5 || 4 || 0 || 16 || 9 || 3,4 || || <toggledisplay>41, 42, 43, 46, 152, 153, 154, 190, 191</toggledisplay> | |||
|- | |||
| 2 || 3 || 8 || 3 || 0 || 16 || 6 || 3 || || <toggledisplay>134, 135, 136, 137, 138, 139</toggledisplay> | |||
|- | |||
| 2 || 1 || 5 || 5 || 0 || 13 || 6 || 4 || || <toggledisplay>32, 33, 34, 35, 36, 37</toggledisplay> | |||
|} | |||
Here is the GAP code to generate this:<toggledisplay> | |||
We use the coded (not in-built) function [[GAP:ConjugacyClassSizeGroupingFull|ConjugacyClassSizeGroupingFull]] (follow link to get code): | |||
<pre>gap> C := ConjugacyClassSizeGroupingFull(64);; | |||
gap> D := List(C,x -> [x[1],x[2],Length(x[2]),Set(List(x[2],i->NilpotencyClassOfGroup(SmallGroup(64,i))))]); | |||
[ [ [ [ 1, 2 ], [ 2, 1 ], [ 4, 5 ], [ 8, 5 ] ], [ 32, 33, 34, 35, 36, 37 ], 6, [ 4 ] ], | |||
[ [ [ 1, 2 ], [ 2, 3 ], [ 4, 8 ], [ 8, 3 ] ], [ 134, 135, 136, 137, 138, 139 ], 6, [ 3 ] ], | |||
[ [ [ 1, 2 ], [ 2, 5 ], [ 4, 5 ], [ 8, 4 ] ], [ 41, 42, 43, 46, 152, 153, 154, 190, 191 ], 9, [ 3, 4 ] ], | |||
[ [ [ 1, 2 ], [ 2, 9 ], [ 4, 11 ] ], [ 257, 258, 259 ], 3, [ 3 ] ], [ [ [ 1, 2 ], [ 2, 15 ], [ 16, 2 ] ], [ 52, 53, 54 ], 3, [ 5 ] ], | |||
[ [ [ 1, 4 ], [ 2, 2 ], [ 4, 6 ], [ 8, 4 ] ], [ 149, 150, 151, 170, 171, 172, 177, 178, 182 ], 9, [ 3 ] ], | |||
[ [ [ 1, 4 ], [ 2, 4 ], [ 4, 9 ], [ 8, 2 ] ], [ 8, 9, 10, 11, 12, 13, 14, 128, 129, 130, 131, 132, 133, 140, 141, 142, 143, 144, 145, 155, 156, 157, | |||
158, 159, 160, 161, 162, 163, 164, 165, 166 ], 31, [ 3 ] ], | |||
[ [ [ 1, 4 ], [ 2, 6 ], [ 4, 12 ] ], [ 4, 5, 18, 19, 23, 24, 25, 28, 30, 90, 91, 92, 93, 94, 98, 99, 100, 102, 109, 111, 121, 122, 123, 125, 215, 216, | |||
217, 218, 219, 220, 221, 222, 223, 224, 225, 254, 255, 256 ], 38, [ 2, 3 ] ], | |||
[ [ [ 1, 4 ], [ 2, 12 ], [ 4, 9 ] ], [ 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240 ], 15, [ 2 ] ], | |||
[ [ [ 1, 4 ], [ 2, 14 ], [ 8, 4 ] ], [ 38, 39, 40, 47, 48, 49, 146, 147, 148, 167, 168, 169, 173, 174, 175, 176, 179, 180, 181, 186, 187, 188, 189 ], | |||
23, [ 3, 4 ] ], [ [ [ 1, 4 ], [ 2, 30 ] ], [ 199, 200, 201, 249, 264, 265, 266 ], 7, [ 2 ] ], | |||
[ [ [ 1, 4 ], [ 4, 15 ] ], [ 241, 242, 243, 244, 245 ], 5, [ 2 ] ], | |||
[ [ [ 1, 8 ], [ 2, 12 ], [ 4, 8 ] ], [ 6, 7, 15, 16, 20, 21, 22, 31, 45, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 88, 89, 95, 96, 97, 101, | |||
104, 105, 106, 107, 108, 110, 113, 114, 116, 117, 118, 119, 120, 124, 127, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, | |||
250, 251, 252, 253 ], 60, [ 2, 3 ] ], [ [ [ 1, 8 ], [ 4, 14 ] ], [ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82 ], 10, [ 2 ] ], | |||
[ [ [ 1, 16 ], [ 2, 24 ] ], [ 3, 17, 27, 29, 44, 51, 56, 57, 58, 59, 84, 85, 86, 87, 103, 112, 115, 126, 184, 185, 193, 194, 195, 196, 197, 198, 247, | |||
248, 261, 262, 263 ], 31, [ 2 ] ], [ [ [ 1, 64 ] ], [ 1, 2, 26, 50, 55, 83, 183, 192, 246, 260, 267 ], 11, [ 1 ] ] ]</pre> | |||
</toggledisplay> | |||
===Grouping by cumulative conjugacy class sizes (number of elements)=== | |||
{| class="sortable" border="1" | |||
! Number of elements in (size at most 1) conjugacy classes !! Number of elements in (size at most 2) conjugacy classes !! Number of elements in (size at most 4) conjugacy classes !! Number of elements in (size at most 8) conjugacy classes !! Number of elements in (size at most 16) conjugacy classes !! Total number of conjugacy classes !! Total number of groups !! Nilpotency class(es) attained by these groups !! Hall-Senior family/families !! List of GAP IDs (second part) | |||
|- | |||
| 64 || 64 || 64 || 64 || 64 || 64 || 11 || 1 || <math>\Gamma_1</math>, i.e., all the [[abelian group]]s of order 64 || <toggledisplay> 1, 2, 26, 50, 55, 83, 183, 192, 246, 260, 267</toggledisplay> | |||
|- | |||
| 16 || 64 || 64 || 64 || 64 || 40 || 31 || 2 || <math>\Gamma_2</math> || <toggledisplay> 3, 17, 27, 29, 44, 51, 56, 57, 58, 59, 84, 85, 86, 87, 103, 112, 115, 126, 184, 185, 193, 194, 195, 196, 197, 198, 247, 248, 261, 262, 263</toggledisplay> | |||
|- | |||
| 8 || 32 || 64 || 64 || 64 || 28 || 60 || 2,3 || <math>\Gamma_3</math> (class three) and <math>\Gamma_4</math> (class two) || <toggledisplay>6, 7, 15, 16, 20, 21, 22, 31, 45, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 88, 89, 95, 96, 97, 101, 104, 105, 106, 107, 108, 110, 113, 114, 116, 117, 118, 119, 120, 124, 127, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 250, 251, 252, 253</toggledisplay> | |||
|- | |||
| 8 || 8 || 64 || 64 || 64 || 22 || 10 || 2 || ? || <toggledisplay>73, 74, 75, 76, 77, 78, 79, 80, 81, 82</toggledisplay> | |||
|- | |||
| 4 || 64 || 64 || 64 || 64 || 34 || 7 || 2 || <math>\Gamma_5</math> || <toggledisplay>199, 200, 201, 249, 264, 265, 266</toggledisplay> | |||
|- | |||
| 4 || 32 || 32 || 64 || 64 || 22 || 23 || 3, 4 ||<math>\Gamma_8</math> || <toggledisplay>38, 39, 40, 47, 48, 49, 146, 147, 148, 167, 168, 169, 173, 174, 175, 176, 179, 180, 181, 186, 187, 188, 189</toggledisplay> | |||
|- | |||
| 4 || 28 || 64 || 64 || 64 || 25 || 15 || 2 || || <toggledisplay>226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240</toggledisplay> | |||
|- | |||
| 4 || 16 || 64 || 64 || 64 || 24 || 38 || 2,3 || <math>\Gamma_6</math> and <math>\Gamma_7</math> || <toggledisplay>4, 5, 18, 19, 23, 24, 25, 28, 30, 90, 91, 92, 93, 94, 98, 99, 100, 102, 109, 111, 121, 122, 123, 125, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 254, 255, 256</toggledisplay> | |||
|- | |||
| 4 || 12 || 48 || 64 || 64 || 19 || 31 || 3 || || <toggledisplay>8, 9, 10, 11, 12, 13, 14, 128, 129, 130, 131, 132, 133, 140, 141, 142, 143, 144, 145, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166</toggledisplay> | |||
|- | |||
| 4 || 8 || 32 || 64 || 64 || 16 || 9 || 3 || || <toggledisplay>149, 150, 151, 170, 171, 172, 177, 178, 182</toggledisplay> | |||
|- | |||
| 4 || 4 || 64 || 64 || 64 || 19 || 5 || 2 || || <toggledisplay>241, 242, 243, 244, 245</toggledisplay> | |||
|- | |||
| 2 || 32 || 32 || 32 || 64 || 19 || 3 || 5 || || <toggledisplay>52, 53, 54</toggledisplay> | |||
|- | |||
| 2 || 20 || 64 || 64 || 64 || 22 || 3 || 3 || || <toggledisplay>257, 258, 259</toggledisplay> | |||
|- | |||
| 2 || 12 || 32 || 64 || 64 || 16 || 9 || 3,4 || || <toggledisplay>41, 42, 43, 46, 152, 153, 154, 190, 191</toggledisplay> | |||
|- | |||
| 2 || 8 || 40 || 64 || 64 || 16 || 6 || 3 || || <toggledisplay>134, 135, 136, 137, 138, 139</toggledisplay> | |||
|- | |||
| 2 || 4 || 24 || 64 || 64 || 13 || 6 || 4 || || <toggledisplay>32, 33, 34, 35, 36, 37</toggledisplay> | |||
|} | |||
Note that it is ''not'' true that the cumulative conjugacy class size statistics values divide the order of the group in all cases. There are a few counterexamples in the table above, as we can see values such as 12, 20, 28, and 40. <math>p^6</math> is the smallest prime power where such examples exist. See also: | |||
* [[There exist groups of prime-sixth order in which the cumulative conjugacy class size statistics values do not divide the order of the group]] | |||
* [[All cumulative conjugacy class size statistics values divide the order of the group for groups up to prime-fifth order]] | |||
==1-isomorphism== | |||
===Pairs where one of the groups is abelian=== | ===Pairs where one of the groups is abelian=== | ||
There are 29 pairs of groups that are 1-isomorphic with the property that one of them is abelian. Of these, some pairs share the abelian group part, as the table below shows: | There are 29 pairs of groups that are [[1-isomorphic groups|1-isomorphic]] with the property that one of them is abelian. Of these, some pairs share the abelian group part, as the table below shows. Of these, the only example of a group that is not of nilpotency class two is [[SmallGroup(64,25)]] (GAP ID: 25): | ||
Here is a summary version: | |||
{| class="sortable" border="1" | |||
! Nature of 1-isomorphism !! Intermediate object !! Number of 1-isomorphisms between non-abelian and abelian group of this type !! Number of 1-isomorphisms between non-abelian and abelian group of this nature, not of any of the preceding types !! Note | |||
|- | |||
| [[linear halving generalization of Baer correspondence]] || [[class two Lie ring]] || 3 || 3 || The examples are [[SmallGroup(64,57)]], [[direct product of SmallGroup(32,4) and Z2]] (ID: (64,84)), and [[semidirect product of Z16 and Z4 of M-type]] (ID: (64,27)). See table below. | |||
|- | |||
| [[cocycle halving generalization of Baer correspondence]] || [[class two Lie cring]] || 17 || 14 || See table below. | |||
|- | |||
| [[cocycle skew reversal generalization of Baer correspondence]] || [[class two near-Lie cring]] || 19 || 2 || The two new examples are [[SmallGroup(64,17)]] and [[direct product of SmallGroup(32,2) and Z2]]. | |||
|- | |||
| [[linear halving generalization of Lazard correspondence]] || [[class three Lie ring]]|| 4 || 0|| Of the four examples, three arise via the [[linear halving generalization of Baer correspondence]]. The fourth, namely [[semidirect product of Z8 and Z8 of M-type]] (ID: (64,3)), ''alternatively'' arises via the [[cocycle halving generalization of Baer correspondence]]. | |||
|- | |||
| [[cocycle halving generalization of Lazard correspondence]] || [[class three Lie cring]] || 21 || 4 || The new examples are [[semidirect product of Z16 and Z4 via fifth power map]] (ID: 28), [[SmallGroup(64,113)]], [[SmallGroup(64,114)]] and [[SmallGroup(64,210)]]. See table below. | |||
|} | |||
A total of 23 of the 29 1-isomorphisms are explained using the explanations here. | |||
Here is a long version: | |||
{| class="sortable" border="1" | {| class="sortable" border="1" | ||
! Non-abelian member of pair !! GAP ID !! Abelian member of pair !! GAP ID !! | ! Non-abelian member of pair !! GAP ID !! Abelian member of pair !! GAP ID !! The 1-isomorphism arises as a ... !! Description of the 1-isomorphism !! Best perspective 1 !! Best perspective 2 !! Alternative perspective | ||
|- | |- | ||
| [[semidirect product of | | [[semidirect product of Z16 and Z4 of M-type]] || 27 || [[direct product of Z16 and Z4]] || 26 || [[linear halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie ring]] || || ||[[second cohomology group for trivial group action of direct product of Z4 and Z4 on Z4]]|| | ||
|- | |- | ||
| [[ | | [[SmallGroup(64,57)]] || 57 || [[direct product of Z4 and Z4 and Z4]] || 55 || [[linear halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie ring]] || || || [[second cohomology group for trivial group action of direct product of Z4 and Z4 on Z4]] || | ||
|- | |- | ||
| [[ | | [[direct product of SmallGroup(32,4) and Z2]] || 84 || [[direct product of Z8 and Z4 and Z2]] || 83 || [[linear halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie ring]] || || || [[second cohomology group for trivial group action of direct product of Z4 and Z4 on Z4]]|| | ||
|- | |- | ||
| [[ | | [[semidirect product of Z8 and Z8 of M-type]] || 3 || [[direct product of Z8 and Z8]] || 2 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]]; alternatively, the [[linear halving generalization of Lazard correspondence]], the intermediate object being a [[class three Lie ring]] || || || || | ||
|- | |- | ||
| [[ | | [[M64]] || 51 || [[direct product of Z32 and Z2]] || 50 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| [[direct product of M16 and Z4]] || 85 || [[direct product of Z8 and Z4 and Z2]] || 83 || | | [[direct product of M16 and Z4]] || 85 || [[direct product of Z8 and Z4 and Z2]] || 83 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]]|| || || || | ||
|- | |- | ||
| [[central product of M16 and Z8 over common Z2]] || 86 || [[direct product of Z8 and Z4 and Z2]] || 83 || | | [[central product of M16 and Z8 over common Z2]] || 86 || [[direct product of Z8 and Z4 and Z2]] || 83 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| || 112 || [[direct product of Z8 and Z4 and Z2]] || 83 || | | || 112 || [[direct product of Z8 and Z4 and Z2]] || 83 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| [[direct product of M32 and Z2]]|| 184 || [[direct product of Z16 and V4]] || 183 || | | [[direct product of M32 and Z2]]|| 184 || [[direct product of Z16 and V4]] || 183 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| [[central product of D8 and Z16]] || 185 || [[direct product of Z16 and V4]] || 183 || | | [[central product of D8 and Z16]] || 185 || [[direct product of Z16 and V4]] || 183 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| [[direct product of SmallGroup(32,24) and Z2]] || 195 || [[direct product of Z4 and Z4 and V4]] || 192 || | | [[direct product of SmallGroup(32,24) and Z2]] || 195 || [[direct product of Z4 and Z4 and V4]] || 192 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| [[direct product of SmallGroup(16,13) and Z4]] || 198 || [[direct product of Z4 and Z4 and V4]] || 192 || | | [[direct product of SmallGroup(16,13) and Z4]] || 198 || [[direct product of Z4 and Z4 and V4]] || 192 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| [[direct product of M16 and V4]] || 247 || [[direct product of Z8 and E8]] || 246 || | | [[direct product of M16 and V4]] || 247 || [[direct product of Z8 and E8]] || 246 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| [[SmallGroup(64,248)]] || 248 || [[direct product of Z8 and E8]] || 246 || | | [[SmallGroup(64,248)]] || 248 || [[direct product of Z8 and E8]] || 246 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| || 249 || [[direct product of Z8 and E8]] || 246 || | | || 249 || [[direct product of Z8 and E8]] || 246 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| [[direct product of SmallGroup(16,13) and V4]] || 263 || [[direct product of E16 and Z4]] || 260 || | | [[direct product of SmallGroup(16,13) and V4]] || 263 || [[direct product of E16 and Z4]] || 260 ||[[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| || 266 || [[direct product of E16 and Z4]] || 260 || | | || 266 || [[direct product of E16 and Z4]] || 260 || [[cocycle halving generalization of Baer correspondence]], the intermediate object being a [[class two Lie cring]] || || || || | ||
|- | |- | ||
| [[ | | [[SmallGroup(64,17)]] || 17 || [[direct product of Z8 and Z4 and Z2]] || 83 || [[cocycle skew reversal generalization of Baer correspondence]], the intermediate object being a [[class two near-Lie cring]] || || || || | ||
|- | |- | ||
| || | | [[direct product of SmallGroup(32,2) and Z2]] || 56 || [[direct product of Z4 and Z4 and V4]] || 192 || [[cocycle skew reversal generalization of Baer correspondence]], the intermediate object being a [[class two near-Lie cring]] || || || || | ||
|- | |- | ||
| || | | [[semidirect product of Z16 and Z4 via fifth power map]] || 28 || [[direct product of Z16 and Z4]] || 26 || [[cocycle halving generalization of Lazard correspondence]], the intermediate object being a [[class three Lie cring]] || || || || | ||
|- | |- | ||
| || | | [[SmallGroup(64,113)]] || 113 || [[direct product of Z8 and Z4 and Z2]] || 83 || [[cocycle halving generalization of Lazard correspondence]], the intermediate object being a [[class three Lie cring]] || || || || | ||
|- | |- | ||
| || | | [[SmallGroup(64,114)]] || 114 || [[direct product of Z8 and Z4 and Z2]] || 83 || [[cocycle halving generalization of Lazard correspondence]], the intermediate object being a [[class three Lie cring]] || || || || | ||
|- | |- | ||
| || | | [[SmallGroup(64,210)]] || 210 || [[direct product of Z4 and Z4 and V4]] || 192 || [[cocycle halving generalization of Lazard correspondence]], the intermediate object being a [[class three Lie cring]] || || || || | ||
|- | |- | ||
| || | | || 64 || [[direct product of Z4 and Z4 and Z4]] || 55 || ? || || || || | ||
|- | |- | ||
| | | || 82 || [[direct product of Z4 and Z4 and Z4]] || 55 || ? || || || || | ||
|- | |- | ||
| || | | [[SmallGroup(64,25)]] || 25 || [[direct product of Z8 and Z4 and Z2]] || 83 || ? || || || || | ||
|- | |- | ||
| || | | || 61 || [[direct product of Z4 and Z4 and V4]] || 192 || ? || || || || | ||
|- | |- | ||
| | | || 77 || [[direct product of Z4 and Z4 and V4]] || 192 || ? || || || || | ||
|- | |- | ||
| || | | [[direct product of SmallGroup(32,33) and Z2]] || 209 || [[direct product of Z4 and Z4 and V4]] || 192 || || || || || | ||
|} | |} | ||
===Grouping by abelian member=== | |||
Of the 11 abelian groups of order 64, 9 are 1-isomorphic to non-abelian groups. The only two that aren't are [[cyclic group:Z64]], on account of the fact that [[finite group having the same order statistics as a cyclic group is cyclic]], and [[elementary abelian group:E64]], on account of the fact that [[exponent two implies abelian]]. | |||
{| class="sortable" border="1" | |||
! Abelian member !! GAP ID !! Total number of members (''excluding'' abelian member) !! Other members !! GAP IDs (in order of listing) !! Hall-Senior symbols (in order of listing) !! Hall-Senior numbers (in order of listing) | |||
|- | |||
| [[direct product of Z8 and Z8]] || 2 || 1 || [[semidirect product of Z8 and Z8 of M-type]] || 3 || || | |||
|- | |||
| [[direct product of Z16 and Z4]] || 26 || 2 || [[semidirect product of Z16 and Z4 of M-type]], [[semidirect product of Z16 and Z4 via fifth power map]] || 27, 28 || || | |||
|- | |||
| [[direct product of Z32 and Z2]] || 50 || 1 || [[M64]] || 51 || || | |||
|- | |||
| [[direct product of Z4 and Z4 and Z4]] || 55 || 3 || [[SmallGroup(64,57)]], [[SmallGroup(64,64)]], [[SmallGroup(64,82)]] || 57, 64, 82 || || | |||
|- | |||
| [[direct product of Z8 and Z4 and Z2]] || 83 || 8 || <toggledisplay>[[SmallGroup(64,17)]], [[SmallGroup(64,25)]], [[direct product of SmallGroup(32,4) and Z2]], [[direct product of M16 and Z4]], [[central product of M16 and Z8 over common Z2]], [[SmallGroup(64,112)]], [[SmallGroup(64,113)]], [[SmallGroup(64,114)]]</toggledisplay> || 17, 25, 84, 85, 86, 112, 113, 114 || || | |||
|- | |||
| [[direct product of Z16 and V4]] || 183 || 2 || [[direct product of M32 and Z2]], [[central product of D8 and Z16]] || 184, 185 || || | |||
|- | |||
| [[direct product of Z4 and Z4 and V4]] || 192 || 7 || <toggledisplay>[[direct product of SmallGroup(32,2) and Z2]], [[SmallGroup(64,61)]], [[SmallGroup(64,77)]], [[direct product of SmallGroup(32,24) and Z2]], [[direct product of SmallGroup(16,13) and Z4]], [[SmallGroup(64,209)]], [[SmallGroup(64,210)]]</toggledisplay> || 56, 61, 77, 195, 198, 209, 210 || || | |||
|- | |||
| [[direct product of Z8 and E8]] || 246 || 3 || [[direct product of M16 and V4]], [[SmallGroup(64,248)]], [[SmallGroup(64,249)]] || 247, 248, 249 || || | |||
|- | |||
| [[direct product of E16 and Z4]] || 260 || 2 || [[direct product of SmallGroup(16,13) and V4]], [[SmallGroup(64,266)]] || 263, 266 || || | |||
|- | |||
| Total || -- || 29 || -- || -- || -- ||-- | |||
|} | |} |
Latest revision as of 23:46, 15 July 2011
This article gives specific information, namely, element structure, about a family of groups, namely: groups of order 64.
View element structure of group families | View element structure of groups of a particular order |View other specific information about groups of order 64
Conjugacy class sizes
FACTS TO CHECK AGAINST FOR CONJUGACY CLASS SIZES AND STRUCTURE:
Divisibility facts: size of conjugacy class divides order of group | size of conjugacy class divides index of center | size of conjugacy class equals index of centralizer
Bounding facts: size of conjugacy class is bounded by order of derived subgroup
Counting facts: number of conjugacy classes equals number of irreducible representations | class equation of a group
Grouping by conjugacy class sizes
Here now is a grouping by conjugacy class sizes. Note that since number of conjugacy classes in group of prime power order is congruent to order of group modulo prime-square minus one, all the values for the number of conjugacy classes are congruent to 64 mod 3, and hence congruent to 1 mod 3.
Number of size 1 conjugacy classes | Number of size 2 conjugacy classes | Number of size 4 conjugacy classes | Number of size 8 conjugacy classes | Number of size 16 conjugacy classes | Total number of conjugacy classes | Total number of groups | Nilpotency class(es) attained by these groups | Hall-Senior family/families | List of GAP IDs (second part) |
---|---|---|---|---|---|---|---|---|---|
64 | 0 | 0 | 0 | 0 | 64 | 11 | 1 | , i.e., all the abelian groups of order 64 | [SHOW MORE] |
16 | 24 | 0 | 0 | 0 | 40 | 31 | 2 | [SHOW MORE] | |
8 | 12 | 8 | 0 | 0 | 28 | 60 | 2,3 | (class three) and (class two) | [SHOW MORE] |
8 | 0 | 14 | 0 | 0 | 22 | 10 | 2 | ? | [SHOW MORE] |
4 | 30 | 0 | 0 | 0 | 34 | 7 | 2 | [SHOW MORE] | |
4 | 14 | 0 | 4 | 0 | 22 | 23 | 3, 4 | [SHOW MORE] | |
4 | 12 | 9 | 0 | 0 | 25 | 15 | 2 | [SHOW MORE] | |
4 | 6 | 12 | 0 | 0 | 22 | 38 | 2,3 | and | [SHOW MORE] |
4 | 4 | 9 | 2 | 0 | 19 | 31 | 3 | [SHOW MORE] | |
4 | 2 | 6 | 4 | 0 | 16 | 9 | 3 | [SHOW MORE] | |
4 | 0 | 15 | 0 | 0 | 19 | 5 | 2 | [SHOW MORE] | |
2 | 15 | 0 | 0 | 2 | 19 | 3 | 5 | [SHOW MORE] | |
2 | 9 | 11 | 0 | 0 | 22 | 3 | 3 | [SHOW MORE] | |
2 | 5 | 5 | 4 | 0 | 16 | 9 | 3,4 | [SHOW MORE] | |
2 | 3 | 8 | 3 | 0 | 16 | 6 | 3 | [SHOW MORE] | |
2 | 1 | 5 | 5 | 0 | 13 | 6 | 4 | [SHOW MORE] |
Here is the GAP code to generate this:[SHOW MORE]
Grouping by cumulative conjugacy class sizes (number of elements)
Number of elements in (size at most 1) conjugacy classes | Number of elements in (size at most 2) conjugacy classes | Number of elements in (size at most 4) conjugacy classes | Number of elements in (size at most 8) conjugacy classes | Number of elements in (size at most 16) conjugacy classes | Total number of conjugacy classes | Total number of groups | Nilpotency class(es) attained by these groups | Hall-Senior family/families | List of GAP IDs (second part) |
---|---|---|---|---|---|---|---|---|---|
64 | 64 | 64 | 64 | 64 | 64 | 11 | 1 | , i.e., all the abelian groups of order 64 | [SHOW MORE] |
16 | 64 | 64 | 64 | 64 | 40 | 31 | 2 | [SHOW MORE] | |
8 | 32 | 64 | 64 | 64 | 28 | 60 | 2,3 | (class three) and (class two) | [SHOW MORE] |
8 | 8 | 64 | 64 | 64 | 22 | 10 | 2 | ? | [SHOW MORE] |
4 | 64 | 64 | 64 | 64 | 34 | 7 | 2 | [SHOW MORE] | |
4 | 32 | 32 | 64 | 64 | 22 | 23 | 3, 4 | [SHOW MORE] | |
4 | 28 | 64 | 64 | 64 | 25 | 15 | 2 | [SHOW MORE] | |
4 | 16 | 64 | 64 | 64 | 24 | 38 | 2,3 | and | [SHOW MORE] |
4 | 12 | 48 | 64 | 64 | 19 | 31 | 3 | [SHOW MORE] | |
4 | 8 | 32 | 64 | 64 | 16 | 9 | 3 | [SHOW MORE] | |
4 | 4 | 64 | 64 | 64 | 19 | 5 | 2 | [SHOW MORE] | |
2 | 32 | 32 | 32 | 64 | 19 | 3 | 5 | [SHOW MORE] | |
2 | 20 | 64 | 64 | 64 | 22 | 3 | 3 | [SHOW MORE] | |
2 | 12 | 32 | 64 | 64 | 16 | 9 | 3,4 | [SHOW MORE] | |
2 | 8 | 40 | 64 | 64 | 16 | 6 | 3 | [SHOW MORE] | |
2 | 4 | 24 | 64 | 64 | 13 | 6 | 4 | [SHOW MORE] |
Note that it is not true that the cumulative conjugacy class size statistics values divide the order of the group in all cases. There are a few counterexamples in the table above, as we can see values such as 12, 20, 28, and 40. is the smallest prime power where such examples exist. See also:
- There exist groups of prime-sixth order in which the cumulative conjugacy class size statistics values do not divide the order of the group
- All cumulative conjugacy class size statistics values divide the order of the group for groups up to prime-fifth order
1-isomorphism
Pairs where one of the groups is abelian
There are 29 pairs of groups that are 1-isomorphic with the property that one of them is abelian. Of these, some pairs share the abelian group part, as the table below shows. Of these, the only example of a group that is not of nilpotency class two is SmallGroup(64,25) (GAP ID: 25):
Here is a summary version:
A total of 23 of the 29 1-isomorphisms are explained using the explanations here. Here is a long version:
Grouping by abelian member
Of the 11 abelian groups of order 64, 9 are 1-isomorphic to non-abelian groups. The only two that aren't are cyclic group:Z64, on account of the fact that finite group having the same order statistics as a cyclic group is cyclic, and elementary abelian group:E64, on account of the fact that exponent two implies abelian.