Unitriangular matrix group:UT(3,p)
This article is about a family of groups with a parameter that is prime. For any fixed value of the prime, we get a particular group.
View other such prime-parametrized groups
Definition
Note that the case , where the group becomes dihedral group:D8, behaves somewhat differently from the general case. We note on the page all the places where the discussion does not apply to .
As a group of matrices
Given a prime , the group is defined as the unitriangular matrix group of degree three over the prime field . Explicitly, it has the following form with the usual matrix multiplication:
The multiplication of matrices and gives the matrix where:
The identity element is the identity matrix.
The inverse of a matrix is the matrix where:
Note that all addition and multiplication in these definitions is happening over the field .
In coordinate form
We may define the group as set of triples over the prime field , with the multiplication law given by:
,
.
The matrix corresponding to triple is:
Definition by presentation
The group can be defined by means of the following presentation:
where denotes the identity element.
These commutation relation resembles Heisenberg's commuatation relations in quantum mechanics and so the group is sometimes called a finite Heisenberg group. Generators correspond to matrices:
Note that in the above presentation, the generator is redundant, and the presentation can thus be rewritten as a presentation with only two generators and .
As a semidirect product
This group of order can also be described as a semidirect product of the elementary abelian group of order by the cyclic group of order , with the following action. Denote the base of the semidirect product as ordered pairs of elements from . The action of the generator of the acting group is as follows:
In this case, for instance, we can take the subgroup with as the elementary abelian subgroup of order , i.e., the elementary abelian subgroup of order is the subgroup:
The acting subgroup of order can be taken as the subgroup with , i.e., the subgroup:
Families
- These groups fall in the more general family of unitriangular matrix groups. The unitriangular matrix group can be described as the group of unipotent upper-triangular matrices in , which is also a -Sylow subgroup of the general linear group . This further can be generalized to where is the power of a prime . is the -Sylow subgroup of .
- These groups also fall into the general family of extraspecial groups. For any number of the form , there are two extraspecial groups of that order: an extraspecial group of "+" type and an extraspecial group of "-" type. is an extraspecial group of order and "+" type. The other type of extraspecial group of order , i.e., the extraspecial group of order and "-" type, is semidirect product of cyclic group of prime-square order and cyclic group of prime order.
Elements
Further information: element structure of unitriangular matrix group:UT(3,p)
Summary
Item | Value |
---|---|
number of conjugacy classes | |
order | Agrees with general order formula for : |
conjugacy class size statistics | size 1 ( times), size ( times) |
orbits under automorphism group | Case : size 1 (1 conjugacy class of size 1), size 1 (1 conjugacy class of size 1), size 2 (1 conjugacy class of size 2), size 4 (2 conjugacy classes of size 2 each) Case odd : size 1 (1 conjugacy class of size 1), size ( conjugacy classes of size 1 each), size ( conjugacy classes of size each) |
number of orbits under automorphism group | 4 if 3 if is odd |
order statistics | Case : order 1 (1 element), order 2 (5 elements), order 4 (2 elements) Case odd: order 1 (1 element), order ( elements) |
exponent | 4 if if odd |
Conjugacy class structure
Note that the characteristic polynomial of all elements in this group is , hence we do not devote a column to the characteristic polynomial.
For reference, we consider matrices of the form:
Nature of conjugacy class | Jordan block size decomposition | Minimal polynomial | Size of conjugacy class | Number of such conjugacy classes | Total number of elements | Order of elements in each such conjugacy class | Type of matrix |
---|---|---|---|---|---|---|---|
identity element | 1 + 1 + 1 + 1 | 1 | 1 | 1 | 1 | ||
non-identity element, but central (has Jordan blocks of size one and two respectively) | 2 + 1 | 1 | , | ||||
non-central, has Jordan blocks of size one and two respectively | 2 + 1 | , but not both and are zero | |||||
non-central, has Jordan block of size three | 3 | if odd 4 if |
both and are nonzero | ||||
Total (--) | -- | -- | -- | -- | -- |
Arithmetic functions
Compare and contrast arithmetic function values with other groups of prime-cube order at Groups of prime-cube order#Arithmetic functions
For some of these, the function values are different when and/or when . These are clearly indicated below.
Arithmetic functions taking values between 0 and 3
Function | Value | Explanation |
---|---|---|
prime-base logarithm of order | 3 | the order is |
prime-base logarithm of exponent | 1 | the exponent is . Exception when , where the exponent is . |
nilpotency class | 2 | |
derived length | 2 | |
Frattini length | 2 | |
minimum size of generating set | 2 | |
subgroup rank | 2 | |
rank as p-group | 2 | |
normal rank as p-group | 2 | |
characteristic rank as p-group | 1 |
Arithmetic functions of a counting nature
Function | Value | Explanation |
---|---|---|
number of conjugacy classes | elements in the center, and each other conjugacy class has size | |
number of subgroups | when , when | See subgroup structure of unitriangular matrix group:UT(3,p) |
number of normal subgroups | See subgroup structure of unitriangular matrix group:UT(3,p) | |
number of conjugacy classes of subgroups | for , for | See subgroup structure of unitriangular matrix group:UT(3,p) |
Subgroups
Further information: Subgroup structure of unitriangular matrix group:UT(3,p)
Note that the analysis here specifically does not apply to the case . For , see subgroup structure of dihedral group:D8.
Table classifying subgroups up to automorphisms
Automorphism class of subgroups | Representative | Isomorphism class | Order of subgroups | Index of subgroups | Number of conjugacy classes | Size of each conjugacy class | Number of subgroups | Isomorphism class of quotient (if exists) | Subnormal depth (if subnormal) |
---|---|---|---|---|---|---|---|---|---|
trivial subgroup | trivial group | 1 | 1 | 1 | 1 | prime-cube order group:U(3,p) | 1 | ||
center of unitriangular matrix group:UT(3,p) | ; equivalently, given by . | group of prime order | 1 | 1 | 1 | elementary abelian group of prime-square order | 1 | ||
non-central subgroups of prime order in unitriangular matrix group:UT(3,p) | Subgroup generated by any element with at least one of the entries nonzero | group of prime order | -- | 2 | |||||
elementary abelian subgroups of prime-square order in unitriangular matrix group:UT(3,p) | join of center and any non-central subgroup of prime order | elementary abelian group of prime-square order | 1 | group of prime order | 1 | ||||
whole group | all elements | unitriangular matrix group:UT(3,p) | 1 | 1 | 1 | 1 | trivial group | 0 | |
Total (5 rows) | -- | -- | -- | -- | -- | -- | -- |
Tables classifying isomorphism types of subgroups
Group name | GAP ID | Occurrences as subgroup | Conjugacy classes of occurrence as subgroup | Occurrences as normal subgroup | Occurrences as characteristic subgroup |
---|---|---|---|---|---|
Trivial group | 1 | 1 | 1 | 1 | |
Group of prime order | 1 | 1 | |||
Elementary abelian group of prime-square order | 0 | ||||
Prime-cube order group:U3p | 1 | 1 | 1 | 1 | |
Total | -- |
Table listing number of subgroups by order
Group order | Occurrences as subgroup | Conjugacy classes of occurrence as subgroup | Occurrences as normal subgroup | Occurrences as characteristic subgroup |
---|---|---|---|---|
1 | 1 | 1 | 1 | |
1 | 1 | |||
0 | ||||
1 | 1 | 1 | 1 | |
Total |
Linear representation theory
Further information: linear representation theory of unitriangular matrix group:UT(3,p)
Item | Value |
---|---|
number of conjugacy classes (equals number of irreducible representations over a splitting field) | . See number of irreducible representations equals number of conjugacy classes, element structure of unitriangular matrix group of degree three over a finite field |
degrees of irreducible representations over a splitting field (such as or ) | 1 (occurs times), (occurs times) |
sum of squares of degrees of irreducible representations | (equals order of the group) see sum of squares of degrees of irreducible representations equals order of group |
lcm of degrees of irreducible representations | |
condition for a field (characteristic not equal to ) to be a splitting field | The polynomial should split completely. For a finite field of size , this is equivalent to . |
field generated by character values, which in this case also coincides with the unique minimal splitting field (characteristic zero) | Field where is a primitive root of unity. This is a degree extension of the rationals. |
unique minimal splitting field (characteristic ) | The field of size where is the order of mod . |
degrees of irreducible representations over the rational numbers | 1 (1 time), ( times), (1 time) |
Orbits over a splitting field under the action of the automorphism group | Case : Orbit sizes: 1 (degree 1 representation), 1 (degree 1 representation), 2 (degree 1 representations), 1 (degree 2 representation) Case odd : Orbit sizes: 1 (degree 1 representation), (degree 1 representations), (degree representations) number: 4 (for ), 3 (for odd ) |
Orbits over a splitting field under the multiplicative action of one-dimensional representations | Orbit sizes: (degree 1 representations), and orbits of size 1 (degree representations) |
Endomorphisms
Automorphisms
The automorphisms essentially permute the subgroups of order containing the center, while leaving the center itself unmoved.
GAP implementation
GAP ID
For any prime , this group is the third group among the groups of order . Thus, for instance, if , the group is described using GAP's SmallGroup function as:
SmallGroup(343,3)
Note that we don't need to compute ; we can also write this as:
SmallGroup(7^3,3)
As an extraspecial group
For any prime , we can define this group using GAP's ExtraspecialGroup function as:
ExtraspecialGroup(p^3,'+')
For , it can also be constructed as:
ExtraspecialGroup(p^3,p)
where the argument indicates that it is the extraspecial group of exponent . For instance, for :
ExtraspecialGroup(5^3,5)
Other descriptions
Description | Functions used |
---|---|
SylowSubgroup(GL(3,p),p) | SylowSubgroup, GL |
SylowSubgroup(SL(3,p),p) | SylowSubgroup, SL |
SylowSubgroup(PGL(3,p),p) | SylowSubgroup, PGL |
SylowSubgroup(PSL(3,p),p) | SylowSubgroup, PSL |