Element structure of special linear group:SL(2,5)
This article gives specific information, namely, element structure, about a particular group, namely: special linear group:SL(2,5).
View element structure of particular groups | View other specific information about special linear group:SL(2,5)
This article gives detailed information about the element structure of special linear group:SL(2,5), which is a group of order 120.
See also element structure of special linear group of degree two.
Conjugacy class structure
Conjugacy classes
PLACEHOLDER FOR INFORMATION TO BE FILLED IN: [SHOW MORE]
Relationship with conjugacy class structure for an arbitrary special linear group of degree two
Further information: element structure of special linear group of degree two over a finite field
| Nature of conjugacy class | Eigenvalue pairs of all conjugacy classes | Characteristic polynomials of all conjugacy classes | Minimal polynomials of all conjugacy classes | Size of conjugacy class (generic odd ) | Size of conjugacy class () | Number of such conjugacy classes (generic odd ) | Number of such conjugacy classes () | Total number of elements (generic odd ) | Total number of elements () | Representative matrices (one per conjugacy class) |
|---|---|---|---|---|---|---|---|---|---|---|
| Scalar | or | or | or | 1 | 1 | 2 | 2 | 2 | 2 | and |
| Not diagonal, Jordan block of size two | or | or | or | 12 | 4 | 4 | 48 | [SHOW MORE] | ||
| Diagonalizable over field:F25, not over field:F5. Must necessarily have no repeated eigenvalues. | and , where is interpreted a an element of field:F25 that squares to 3 | , | , | 20 | 2 | 40 | , | |||
| Diagonalizable over field:F5 with distinct diagonal entries | 30 | 1 | 30 | |||||||
| Total | NA | NA | NA | NA | NA | 9 | 120 | NA |