Upper central series may be tight with respect to nilpotency class

From Groupprops
Jump to: navigation, search


Let c be any natural number. Then, we can construct a nilpotent group G of nilpotency class c with the following property.

Let Z_k(G) denote the k^{th} member of the Upper central series (?) of G: Z_1(G) = Z(G) is the center and Z_k(G)/Z_{k-1}(G) is the center of G/Z_{k-1}(G) for all k. By definition of Nilpotency class (?), Z_c(G) = G.

We can find a G with the property that for any k \le c, Z_k(G) has nilpotency class precisely k.

Related facts

Opposite facts for lower central series

The corresponding statement is not true for the lower central series. Some related facts:

Opposite facts for upper central series

It is also true that the upper central series for any member of the upper central series (beyond the center) grows faster than the actual upper central series of the whole group. See:


Let H_1, H_2, \dots H_c be groups such that each H_k is a nilpotent group of nilpotency class precisely k, i.e., it is not nilpotent of class smaller than k. Define G as the external direct product:

G = H_1 \times H_2 \times \dots \times H_c

Now, for each k, we have:

Z_k(G) = Z_k(H_1) \times Z_k(H_2) \times \dots \times Z_k(H_c)

In particular, we obtain that:

Z_k(G) = H_1 \times H_2 \times \dots \times H_k \times Z_k(H_{k+1}) \times \dots \times Z_k(H_c)

From the given data, in particular the fact that H_k has nilpotency class exactly k, it is clear that Z_k(G) has nilpotency class exactly k.