# Changes

## Subgroup structure of symmetric group:S4

, 03:48, 18 February 2014
Table classifying subgroups up to automorphisms
! Item !! Value
|-
| [[Number of subgroups]] || 30<br>Compared with [itex]S_n, n = 1,2,3,4,5,\dots[/itex]: 1,2,6,'''30''',156,1455,11300, 151221
|-
| [[Number of conjugacy classes of subgroups]] || 11<br>Compared with [itex]S_n, n = 1,2,3,4,5,\dots[/itex]: 1,2,4,'''11''',19,56,96,296,554,1593
|-
| [[Number of automorphism classes of subgroups]] || 11<br>Compared with [itex]S_n, n = 1,2,3,4,5,\dots[/itex]: 1,2,4,'''11''',19,37,96,296,554,1593
|-
| Isomorphism classes of [[Sylow subgroup]]s and the corresponding [[Sylow number]]s and [[fusion system]]s || 2-Sylow: [[dihedral group:D8]] (order 8), Sylow number is 3, fusion system is [[non-inner non-simple fusion system for dihedral group:D8]]<br>3-Sylow: [[cyclic group:Z3]], Sylow number is 4, fusion system is [[non-inner fusion system for cyclic group:Z3]]
===Table classifying subgroups up to automorphisms===
{{subgroup order sorting note}}
<small>
{| class="sortable" border="1"
! Automorphism class of subgroups !! Representative !! Isomorphism class !! [[Order of a group|Order]] of subgroups !! [[Index of a subgroup|Index]] of subgroups !! Number of conjugacy classes (=1 iff [[automorph-conjugate subgroup]]) !! Size of each conjugacy class (=1 iff [[normal subgroup]]) !! Number of subgroups (=1 iff [[characteristic subgroup]])!! Isomorphism class of quotient (if exists) !! [[Subnormal depth]] (if subnormal) !! Note
|-
| trivial subgroup || [itex]\{ () \}[/itex] || [[trivial group]] || 1 || 24 || 1 || 1 || 1 || [[symmetric group:S4]] || 1 ||
| [[Symmetric group:S4]] || 24 || 12 || 1 || 1 || 1 || 1
|-
| ! Total || -- || -- || 30 || 11 || 4 || 4
|}
| 24 || 1 || 1 || 1 || 1
|-
| ! Total || 30 || 11 || 4 || 4
|}