16Gamma2c | |
Alternating group:A4 | 12 (3) |
Burnside group:B(3,3) | 2,187 (4487) |
Burnside group:B(4,3) | |
Central product of D16 and Z4 | 32 (42) |
Central product of D8 and Q8 | 32 (50) |
Central product of D8 and Z4 | 16 (13) |
Central product of D8 and Z8 | 32 (38) |
Central product of UT(3,3) and Z9 | 81 (14) |
Central product of UT(3,Z) and Q | |
Central product of UT(3,Z) and Z identifying center with 2Z | |
Dicyclic group:Dic20 | 20 (1) |
Dicyclic group:Dic24 | 24 (4) |
Dihedral group:D10 | 10 (1) |
Dihedral group:D12 | 12 (4) |
Dihedral group:D128 | 128 (161) |
Dihedral group:D16 | 16 (7) |
Dihedral group:D20 | 20 (4) |
Dihedral group:D256 | 256 (539) |
Dihedral group:D32 | 32 (18) |
Dihedral group:D64 | 64 (52) |
Dihedral group:D8 | 8 (3) |
Direct product of A4 and D8 | 96 (197) |
Direct product of A4 and E8 | 96 (228) |
Direct product of A4 and Q8 | 96 (199) |
Direct product of A4 and S3 | 72 (44) |
Direct product of A4 and Z2 | 24 (13) |
Direct product of A4 and Z4 and Z2 | 96 (196) |
Direct product of A4 and Z5 | 60 (9) |
Direct product of A4 and Z8 | 96 (73) |
Direct product of D16 and V4 | 64 (250) |
Direct product of D16 and Z2 | 32 (39) |
Direct product of D16 and Z4 | 64 (118) |
Direct product of D8 and D8 | 64 (226) |
Direct product of D8 and V4 | 32 (46) |
Direct product of D8 and Z2 | 16 (11) |
Direct product of D8 and Z3 | 24 (10) |
Direct product of D8 and Z4 | 32 (25) |
Direct product of D8 and Z4 and Z2 | 64 (196) |
Direct product of Dic12 and Z2 | 24 (7) |
Direct product of M16 and V4 | 64 (247) |
Direct product of M16 and Z2 | 32 (37) |
Direct product of M16 and Z4 | 64 (85) |
Direct product of Q16 and Z2 | 32 (41) |
Direct product of Q16 and Z4 | 64 (120) |
Direct product of Q8 and V4 | 32 (47) |
Direct product of Q8 and Z2 | 16 (12) |
Direct product of Q8 and Z3 | 24 (11) |
Direct product of Q8 and Z4 | 32 (26) |
Direct product of S3 and S3 | 36 (10) |