Path-component of identity

From Groupprops
Jump to: navigation, search

Template:Topological subgroup-defining function


The path-component of identity in a topological group is defined as the path-component of the identity element of the group with respect to the topology. The following are true:

  1. The path-component of identity is a topological automorphism-invariant subgroup of the whole group. In particular, it is a normal subgroup of the whole group.
  2. The path-components are precisely the cosets of this subgroup. Since the subgroup is a normal subgroup, the left cosets coincide with the right cosets.

Related notions