(field size) 
(underlying prime, field characteristic) 
(size of Galois group) 

Order of (= ) 
number of irreducible representations (equals number of conjugacy classes 
degrees of irreducible representations 
linear representation theory page

2 
2 
1 
symmetric group:S3 
6 
3 
1,1,2 
linear representation theory of symmetric group:S3

3 
3 
1 
symmetric group:S4 
24 
5 
1,1,2,3,3 
linear representation theory of symmetric group:S4

4 
2 
2 
symmetric group:S5 
120 
7 
1,1,4,4,5,5,6 
linear representation theory of symmetric group:S5

5 
5 
1 
symmetric group:S5 
120 
7 
1,1,4,4,5,5,6 
linear representation theory of symmetric group:S5

7 
7 
1 
projective general linear group:PGL(2,7) 
336 
9 
1,1,6,6,6,7,7,8,8 
linear representation theory of projective general linear group:PGL(2,7)

8 
2 
3 
Ree group:Ree(3) 
1512 
11 
1,1,1,7,7,7,8,8,8,21,27 
linear representation theory of Ree group:Ree(3)

9 
3 
2 
automorphism group of alternating group:A6 
1440 
13 
1,1,1,1,9,9,9,9,10,10,16,16,20 
linear representation theory of automorphism group of alternating group:A6

11 
11 
1 
projective general linear group:PGL(2,11) 
1320 
13 
1,1,10,10,10,10,10,11,11,12,12,12,12 
linear representation theory of projective general linear group:PGL(2,11)
